An Extension of Strong Uniqueness to Rational Approximation

Bruno Brosowski*
Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, D-6000 Frankfurt, West Germany AND
Claudia Guerreiro*
Instituto de Matemática, Universidade Federal do Rio de Janeiro, 21944 Rio de Juneiro, Brasil
Communicated by V. Totik
Received October 24, 1984
DEDICATED TO THE MEMORY OF GÉZA FREUD

In this paper the concept of strong uniqueness is extended to non-normal rational minimization problems. A characterization of those problems which have strongly unique solutions is given. To obtain this characterization a refinement of the Kolmogorov criterion is proved. © 1986 Academic Press, Inc.

1. Introduction

Let S be a compact Hausdorff space, $S \neq \varnothing$, and define the compact Hausdorff space $T:=\{-1,1\} \times S$. Let $B, C: S \rightarrow \mathbb{R}^{N}$ be continuous functions such that the set

$$
U:=\bigcap_{s \in S}\left\{v \in \mathbb{R}^{N} \mid\langle C(s), v\rangle>0\right\}
$$

is non-empty. Let $\gamma: T \rightarrow \mathbb{R}$ be continuous non-negative and for $(v, z) \in U \times \mathbb{R}$ define $p(v, z):=z$.

[^0]For each $x \in C(S)$ consider the minimization problem $\operatorname{MPR}(x)$.
Minimize $p(v, z)$
subject to

$$
\underset{(\eta, s) \in T}{\forall} \eta \frac{\langle B(s), v\rangle}{\langle C(s), v\rangle}-\gamma(\eta, s) z \leqslant \eta x(s) .
$$

A particular case is given by the following.
Let $g_{1}, g_{2}, \ldots, g_{l}, h_{1}, h_{2}, \ldots, h_{m} \in C(S)$ be such that

$$
\left\{\beta \in \mathbb{R}^{m} \mid \underset{s \in S}{\forall} \sum_{i=1}^{m} \beta_{i} h_{i}(s)>0\right\}
$$

is non-empty and define $N:=l+m$,

$$
\begin{aligned}
& B(s):=\left(g_{1}(s), g_{2}(s), \ldots, g_{l}(s), 0,0, \ldots, 0\right), \\
& C(s):=\left(0,0, \ldots, 0, h_{1}(s), h_{2}(s), \ldots, h_{m}(s)\right) .
\end{aligned}
$$

As was shown in [3], this particular case contains certain classes of rational Chebyshev approximation problems, f.e. weighted, one-sided and unsymmetric problems.
Define the set

$$
V:=\left\{\left.\frac{\langle B, v\rangle}{\langle C, v\rangle} \in C(S) \right\rvert\, v \in U\right\} .
$$

A pair $\left(\left\langle B, v_{0}\right\rangle /\left\langle C, v_{0}\right\rangle, z_{0}\right) \in V \times \mathbb{R}$ is also called a solution of $\operatorname{MPR}(x)$, whenever $\left(v_{0}, z_{0}\right)$ is a solution of $\operatorname{MPR}(x)$. For each $r_{0} \in V$ we define the linear subspace

$$
H_{0}:=\left\{v \in \mathbb{R}^{N} \mid \underset{s \in S}{\forall}\left\langle r_{0}(s) C(s)-B(s), v\right\rangle=0\right\},
$$

and for each $v \in \mathbb{R}^{N}$ let φ_{v} be the angle between v and H_{0}.
For each $x \in C(S)$ we introduce the sets

$$
Z_{x}:=\left\{(v, z) \in U \times \mathbb{R} \left\lvert\, \underset{(\eta, s) \in T}{\forall} \eta \frac{\langle B(s), v\rangle}{\langle C(s), v\rangle}-\gamma(\eta, s) z \leqslant \eta x(s)\right.\right\}
$$

and

$$
V_{x}:=\left\{\left.\left(\frac{\langle B, v\rangle}{\langle C, v\rangle}, z\right) \in V \times \mathbb{R} \right\rvert\,(v, z) \in Z_{x}\right\} .
$$

We denote by L the set

$$
\{x \in C(S) \mid \operatorname{MPR}(x) \text { has a solution }\} .
$$

A solution $\left(r_{0}, z_{0}\right)$ of the minimization problem $\operatorname{MPR}(x)$ is called strongly unique if and only if there exists a constant $K_{1}:=K_{1}(x)>0$ such that

$$
\begin{equation*}
\underset{(v, z) \in Z_{x}}{\forall} z-z_{0} \geqslant K_{1} \varphi_{v} . \tag{*}
\end{equation*}
$$

In this paper we characterize those functions x in L such that $\operatorname{MPR}(x)$ has a strongly unique solution $\left(r_{0}, z_{0}\right)$. It turns out that the Haar-condition in a certain finite subset of S is always sufficient for strong uniqueness and also necessary provided $\gamma(\eta, s)>0$ for $(\eta, s) \in T$. We remark that these results are valid without assuming normality of the function x.

In the normal case (compare Section 5) we prove that condition (*) is equivalent to the usual definition of strong unicity, i.e.,

$$
\begin{equation*}
\underset{(r, z) \in V_{x}}{\forall} z-z_{0} \geqslant K_{2}\left\|r-r_{0}\right\|_{\infty} \tag{}
\end{equation*}
$$

where $K_{2}:=K_{2}(x)>0$. It is known that in the non-normal case even with Haar-condition in S the inequality (${ }^{* *}$) is not valid. Thus definition (*) of strong uniqueness extends the usual one in a natural way.

For rational Chebyshev approximation Cheney and Loeb [5] proved a strong uniqueness result of the type

$$
\begin{equation*}
\|x-r\|_{\infty}-\left\|x-r_{0}\right\|_{\infty} \geqslant K_{3} \varphi_{v}^{2} \tag{***}
\end{equation*}
$$

assuming that x is normal and the Haar-condition is satisfied in S. This result was later extended by Brosowski [1] to the non-normal case. In view of Theorem 5.2 and Example 6.2 it is not possible to derive the strong uniqueness result $\left({ }^{* *}\right)$ from $\left({ }^{* * *}\right)$. A direct proof of $\left({ }^{* *}\right)$ was given by Cheney [4] assuming the Haar-condition in S. Later Loeb [8] estimated in the non-normal case the difference

$$
\|x-r\|_{\infty}-\left\|x-r_{0}\right\|_{\infty}
$$

essentially by $K_{4} \cdot \varphi_{0}$ also assuming the Haar-condition in S.
In the proof of the sufficiency part of the strong uniqueness Theorem 4.1 we use a refinement of the Kolmogorov criterion, which in proved in Section 3. This refinement extends a result of Brosowski [2] in the linear case, who also used it to characterize functions with strongly unique best approximations.

Since the Haar-condition in S implies, of course, the Haar-condition in
any finite subset of S, the various results mentioned above follow from our results. Also results of Loeb and Moursund [9] and of Taylor [10] for the case of one-sided rational Chebyshev approximation are included. In Theorems 4.2 and 5.2 we have strong uniqueness results in the parameter space which contain results of Cheney and Loeb [6] and Hettich and Zencke [7].

If condition $\left(^{*}\right)$ is satisfied for $\operatorname{MPR}(x)$ then we can derive in the case

$$
T_{c}:=\{(\eta, s) \in T \mid \gamma(\eta, s)>0\}
$$

compact a continuity result for the angle φ_{v}, i.e., there exists a constant $K_{5}:=K_{5}(x)>0$ such that

$$
\varphi_{v} \leqslant K_{5}\|y-x\|
$$

for all y in L, where v defines a solution of $\operatorname{MPR}(y)$. If x is a normal point, then we can derive from $\left({ }^{* *}\right)$ a continuity result for the metric projection. We remark that in the case of usual Chebyshev approximation and in the case of one-sided approximation the set T_{c} is always compact.

We introduce some definitions and notations. For each $r_{0} \in V$ define the linear space

$$
\mathscr{L}\left(r_{0}\right):=\left\{\left\langle r_{0} C-B, v\right\rangle \in C(S) \mid v \in \mathbb{R}^{N}\right\} .
$$

Choose a basis $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d}$ of $\mathscr{L}\left(r_{0}\right)$ and define for each $t=(\eta, s)$ in T the vectors

$$
G(t):=G(\eta, s):=\eta\left(\varphi_{1}(s), \varphi_{2}(s), \ldots, \varphi_{d}(s)\right)
$$

A subset $M \subset T$ is said to be critical (with respect to r_{0} in V) iff

$$
0 \in \operatorname{con}\left(\left\{G(t) \in \mathbb{R}^{d} \mid t \in M\right\}\right)
$$

For each $\left(r_{0}, z_{0}\right) \in V \times \mathbb{R}, z_{0}>0$, define

$$
M_{0}:=\left\{(\eta, s) \in T \mid \eta\left(r_{0}(s)-x(s)\right)=\gamma(\eta, s) z_{0}\right\} .
$$

A signature on S is a continuous mapping defined on a closed subset of S into $\{-1,1\}$. In the following we assume that $x \notin V$ and that

$$
\underset{s \in S}{\forall} \gamma(-1, s)+\gamma(1, s)>0 .
$$

We define a signature ε_{0} by setting $\varepsilon_{0}(s)=\eta$ for each $(\eta, s) \in M_{0}$. A signature ε is said to be critical iff

$$
\{(\varepsilon(s), s) \in T \mid s \in \operatorname{DOM}(\varepsilon)\}
$$

is a critical subset of T. A critical signature is called primitive, if it does not contain properly any other critical signature. We denote by Λ_{0} the set of all primitive critical signatures contained in ε_{0}.

For each signature ε define the linear space

$$
V(\varepsilon):=\left\{v \in \mathbb{R}^{N} \mid \underset{s \in \operatorname{DOM}(\varepsilon)}{\forall}\left\langle r_{0}(s) C(s)-B(s), v\right\rangle=0\right\},
$$

and for each $v \in \mathbb{R}^{N}$ let $\varphi_{v}(\varepsilon)$ denote the angle between v and $V(\varepsilon)$. Further define

$$
\Gamma_{0}:=\left\{(\varepsilon(s), s) \in M_{0} \mid \varepsilon \in \Lambda_{0}\right\}
$$

and

$$
S_{0}:=\left\{s \in S \mid\left(\varepsilon_{0}(s), s\right) \in \Gamma_{0}\right\} .
$$

Using Theorem 1.3 and Lemma 4.2 of [3] we have
Theorem 1.1. If $\left(r_{0}, z_{0}\right)$ is a solution of $\operatorname{MPR}(x)$, then ε_{0} is a critical signature.
This theorem implies that the sets Λ_{0}, Γ_{0}, and S_{0} are non-empty provided $\left(r_{0}, z_{0}\right)$ is a solution of $\operatorname{MPR}(x)$. In this case we denote the restriction of ε_{0} to S_{0} by $\tilde{\varepsilon}_{0}$.

2. A Lemma

Lemma 2.1. Let A be a non-empty bounded subset of \mathbb{R}^{N} such that

$$
\underset{v \in H \backslash\{0\}}{\forall} \inf _{w \in A}\langle v, w\rangle<0,
$$

where $H:=\operatorname{span}(A)$.
Then there exists a constant $K>0$ such that

$$
\underset{v \in \mathbb{R}^{N}}{\forall} \inf _{w \in A}\langle v, w\rangle \leqslant-K\|v\| \psi_{v},
$$

where ψ_{v} denotes the angle between v and H^{\perp}.
Proof. By hypothesis, we have

$$
\underset{\substack{v \in H \\\|v\|_{1}}}{\forall} \Psi(v):=\inf _{w \in A}\langle v, w\rangle<0 .
$$

Hence there exists $\alpha>0$ such that

$$
\Psi(v) \leqslant-\alpha
$$

for each $v \in H$ with $\|v\|=1$. If not there exists a sequence $\left(v_{n}\right)$ contained in H such that $\left\|v_{n}\right\|=1, \Psi\left(v_{n}\right) \rightarrow 0$, and $v_{n} \rightarrow v_{0}$. Since $\Psi\left(v_{0}\right)<0$ there exists $w_{0} \in A$ such that $\left\langle v_{0}, w_{0}\right\rangle<0$. Consequently,

$$
\left\langle v_{0}, w_{0}\right\rangle\left\langle\Psi\left(v_{n}\right) \leqslant\left\langle v_{n}, w_{0}\right\rangle\right.
$$

for n large enough. For $n \rightarrow \infty$ we obtain

$$
\left\langle v_{0}, w_{0}\right\rangle<0 \leqslant\left\langle v_{0}, w_{0}\right\rangle,
$$

which is a contradiction. By homogeneity, we have

$$
\underset{v \in H}{\forall} \inf _{w \in A}\langle v, w\rangle \leqslant-\alpha\|v\| .
$$

Now consider $v \in \mathbb{R}^{N}$ and let $P(v)$ be its orthogonal projection onto H^{\perp}. Then $v-P(v) \in H$. Thus

$$
\begin{aligned}
\inf \langle v, w\rangle & =\inf \langle v-P v, w\rangle \\
& \leqslant-\alpha\|v-P v\| \\
& =-\alpha\|v\| \sin \psi_{v} \\
& \leqslant-K\|v\| \psi_{v},
\end{aligned}
$$

with a suitable real number $K>0$.

Corollary 2.2. Let A be a non-empty bounded subset of \mathbb{R}^{N} such that $0 \in \operatorname{con}(A)$ and $0 \not \ddagger \operatorname{con}(\tilde{A})$ for each $\tilde{A} \subsetneq A$.

Then there exists a constant $K>0$ such that

$$
\underset{v \in \mathbb{R}^{N}}{\forall} \inf _{w \in A}\langle v, w\rangle \leqslant-K\|v\| \psi_{v},
$$

where ψ_{v} denotes the angle between v and $H^{\perp}:=(\operatorname{span} A)^{\perp}$.
Proof. The assumptions of the corollary imply that A is a finite set, say

$$
A=\left\{w^{1}, w^{2}, \ldots, w^{k}\right\} .
$$

Since $0 \notin \operatorname{con}(\tilde{A})$ for each $\tilde{A} \subsetneq A$, there exist $\rho_{1}, \rho_{2}, \ldots, \rho_{k}>0$ such that

$$
\rho_{1}+\rho_{2}+\cdots+\rho_{k}=1
$$

and

$$
\rho_{1} w^{1}+\rho_{2} w^{2}+\cdots+\rho_{k} w^{k}=0
$$

Choose $v \in H \backslash\{0\}$. Then the last equation implies

$$
\rho_{1}\left\langle v, w^{1}\right\rangle+\rho_{2}\left\langle v, w^{2}\right\rangle+\cdots+\rho_{k}\left\langle v, w^{k}\right\rangle=0
$$

Since $v \in H$ and $\rho_{i}>0$, at least one product $\left\langle v, w^{j}\right\rangle$ is different from zero. Consequently

$$
\underset{v \in H \backslash\{0\}}{\forall} \inf _{w \in A}\langle v, w\rangle<0 .
$$

Now apply Lemma 2.1.

Corollary 2.3. Let A be a non-empty bounded subset of \mathbb{R}^{N} and $\left(A_{\lambda}\right)_{\lambda \in A}$ be a family of subsets of A such that $A=\bigcup A_{\lambda}$ and for each $\lambda \in A$

$$
0 \in \operatorname{con}\left(A_{\lambda}\right) \& 0 \notin \operatorname{con}\left(\tilde{A}_{\lambda}\right) \quad \text { if } \quad \tilde{A}_{\lambda} \subsetneq A_{\lambda}
$$

Then there exists a constant $K>0$ such that
(a) $\forall_{v \in \mathbb{R}^{N}} \inf _{w \in A}\langle v, w\rangle \leqslant-K\|v\| \psi_{v}$,
(b) $\forall_{v \in \mathbb{R}^{N}} \inf _{w \in A}\langle v, w\rangle \leqslant-K\|v\| \sup _{\lambda \in A} \psi_{v}^{\lambda}$,
where ψ_{v}^{λ} denotes the angle between v and $H_{\lambda}^{\perp}:=\left(\operatorname{span} A_{\lambda}\right)^{\perp}$.

Proof. By Corollary 2.2 , there exists for each $\lambda \in \Lambda$ a constant $K_{i}>0$ such that

$$
\inf _{v \in \mathbb{R}^{N}}^{\forall}\langle v \in A\rangle \leqslant \inf _{w \in A_{i}}\langle v, w\rangle \leqslant-K_{\lambda}\|v\| \psi_{v}^{\lambda}
$$

Consider $v \in H:=\operatorname{span}(A), v \neq 0$. Since $v \notin H^{\perp}$ and $H^{\perp}=\bigcap_{\lambda \in A} H_{\lambda}^{\perp}$ there exists $\lambda \in \Lambda$ such that $v \in H_{\lambda}^{\perp}$. Hence $\psi_{v}^{\lambda}>0$. Consequently, we have

$$
\underset{\substack{v \in H \\ v \neq 0}}{\forall \inf _{w \in A}}\langle v, w\rangle<0
$$

Applying Lemma 2.1, we obtain (a).
Since $H^{\perp} \subset H_{\lambda}^{\perp}$, we have $\psi_{v}^{\lambda} \leqslant \psi_{v}$ for each $\lambda \in A$, and (b) follows immediately.

3. Refined Kolmogorov Criteria

In the following we use the abbreviation

$$
w:=r_{0} C-B,
$$

where r_{0} is a fixed element of V.
Lemma 3.1. Let ε be a primitive critical signature for $r_{0} \in V$. Then

$$
0 \in \operatorname{con}\left\{\varepsilon(s) w(s) \in \mathbb{R}^{N} \mid s \in \operatorname{DOM}(\varepsilon)\right\}
$$

and

$$
0 \notin \operatorname{con}\left\{\varepsilon(s) w(s) \in \mathbb{R}^{N} \mid s \in F\right\}
$$

for each $F \subsetneq \mathrm{DOM}(\varepsilon)$.
Proof. Let $\operatorname{DOM}(\varepsilon)=:\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. Then there exist real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}>0$ such that

$$
\sum_{i=1}^{k} \alpha_{i} \varepsilon\left(s_{i}\right) \varphi_{j}\left(s_{i}\right)=0
$$

$j=1,2, \ldots, d$. Since each coordinate of w is an element of $\mathscr{L}\left(r_{0}\right)$, we have also

$$
\sum_{i=1}^{k} \alpha_{i} \varepsilon\left(s_{i}\right) w\left(s_{i}\right)=0
$$

which implies

$$
0 \in \operatorname{con}\left\{\varepsilon(s) w(s) \in \mathbb{R}^{N} \mid s \in \operatorname{DOM}(\varepsilon)\right\}
$$

Suppose there exists a subset $F \subseteq \operatorname{DOM}(\varepsilon)$ (we can assume $F=$ $\left.\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, n<k\right)$ and real numbers $\rho_{1}, \rho_{2}, \ldots, \rho_{n}>0$ such that

$$
\sum_{i=1}^{n} \rho_{i} \varepsilon\left(s_{i}\right) w\left(s_{i}\right)=0
$$

Since

$$
\mathscr{L}\left(r_{0}\right)=\left\{\langle w, v\rangle \in C(S) \mid v \in \mathbb{R}^{N}\right\}
$$

we have

$$
\sum_{i=1}^{n} \rho_{i} \varepsilon\left(s_{i}\right) h\left(s_{i}\right)=0
$$

for each $h \in \mathscr{L}\left(r_{0}\right)$. In particular, we have

$$
\sum_{i=1}^{n} \rho_{i} \varepsilon\left(s_{i}\right) \varphi_{j}\left(s_{i}\right)=0
$$

$j=1,2, \ldots, d$ or

$$
\sum_{i=1}^{n} \rho_{i} G\left(\varepsilon\left(s_{i}\right), s_{i}\right)=0
$$

i.e., the restriction of ε to the set F is critical.

Theorem 3.2 (Local Kolmogorov criterion). Let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Then there exists a constant $K>0$ such that
(a) $\underset{v \in \mathbb{R}^{N}}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle \leqslant-K\|v\| \varphi_{v}\left(\tilde{\varepsilon}_{0}\right) ;$
(b) $\underset{v \in \mathbb{R}^{N}}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle \leqslant-K\|v\| \sup _{\varepsilon \in \Lambda_{0}} \varphi_{v}(\varepsilon)$.

Proof. The non-empty set

$$
A:=\left\{\varepsilon_{0}(s) w(s) \in \mathbb{R}^{N} \mid s \in S_{0}\right\}
$$

is bounded, since it is contained in the compact set

$$
\left\{\varepsilon_{0}(s) w(s) \in \mathbb{R}^{N} \mid s \in \operatorname{DOM}\left(\varepsilon_{0}\right)\right\}
$$

By definition of S_{0} we have

$$
A=\bigcup_{\varepsilon \in A_{0}} A_{\varepsilon},
$$

where

$$
A_{\varepsilon}:=\left\{\varepsilon_{0}(s) w(s) \in \mathbb{R}^{N} \mid s \in \operatorname{DOM}(\varepsilon)\right\} .
$$

By Lemma 3.1 and by Corollary 2.3 there exists a constant $K>0$ such that
(a) $\underset{v \in \mathbb{R}^{N}}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle$

$$
\leqslant \inf _{s \in \operatorname{DOM}\left(\tilde{\varepsilon}_{0}\right)} \varepsilon_{0}(s)\langle w(s), v\rangle \leqslant-K\|v\| \varphi_{v}\left(\tilde{\varepsilon}_{0}\right) ;
$$

(b) $\underset{v \in \mathbb{R}^{N}}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle$

$$
\leqslant \inf _{s \in \operatorname{DOM}\left(\tilde{\tilde{\theta}}_{0}\right)} \varepsilon_{0}(s)\langle w(s), v\rangle \leqslant-K\|v\| \sup _{\varepsilon \in \Lambda_{0}} \varphi_{v}(\varepsilon) .
$$

Theorem 3.3 (Global Kolmogorov criterion). Let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Then there exists a constant $K_{1}>0$ such that
(a) $\underset{r \in V}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left(r_{0}(s)-r(s)\right) \leqslant-K_{1} \varphi_{v}\left(\tilde{\varepsilon}_{0}\right) ;$
(b) $\underset{r \in V}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left(r_{0}(s)-r(s) \leqslant-K_{1} \sup _{\varepsilon \in A_{0}} \varphi_{v}(\varepsilon)\right.$,
where $v \in U$ is such that $r=\langle B, v\rangle /\langle C, v\rangle$.
Proof. Let $\tilde{s} \in \operatorname{DOM}\left(\varepsilon_{0}\right)$ be such that

$$
\varepsilon_{0}(\tilde{s})\langle w(\tilde{s}), v\rangle=\min _{s \in \operatorname{DOM}\left(e_{0}\right)} \varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle
$$

Then, by using Theorem 3.2 we have

$$
\begin{aligned}
& \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s)\left(r_{0}(s)-r(s)\right) \\
& \quad=\min \frac{\varepsilon_{0}(s)\left\langle r_{0}(s) C(s)-B(s), v\right\rangle}{\langle C(s), v\rangle} \\
& \quad \leqslant \frac{\varepsilon_{0}(\tilde{s})\left\langle r_{0}(\tilde{s}) C(\tilde{s})-B(\tilde{s}), v\right\rangle}{\langle C(\tilde{s}), v\rangle} \\
& \quad \leqslant-\frac{K\|v\| \varphi_{v}\left(\tilde{\varepsilon}_{0}\right)}{\|C\|_{\infty}\|v\|}=:-K_{1} \varphi_{v}\left(\tilde{\varepsilon}_{0}\right),
\end{aligned}
$$

which proves (a).
Since $V\left(\tilde{\varepsilon}_{0}\right) \subset V(\varepsilon)$ for each $\varepsilon \in \Lambda_{0}$, we have $\varphi_{v}\left(\tilde{\varepsilon}_{0}\right) \geqslant \varphi_{v}(\varepsilon)$, which implies (b).

Remark. Instead of estimating $\langle C(s), v\rangle$ by $\|C\|_{\infty} \cdot\|v\|$ we could have used the sharper estimate $\langle C(s), v\rangle \leqslant\|C\|_{\infty} \cdot\|\bar{v}\|$, where $\bar{v} \in \mathbb{R}^{N}$ is defined by

$$
\begin{aligned}
\bar{v}_{i} & :=v_{i} & & \text { if }
\end{aligned} \quad C_{i} \neq 0
$$

$i=1,2, \ldots, N$. This would imply also the sharper estimate

$$
\underset{(v, z) \in Z_{z}}{\forall} z \geqslant z_{0}+\frac{K\|v\|}{\|\bar{v}\|} \varphi_{v}
$$

in the sufficiency part of Theorem 4.1.

In the case of linear problems the refined Kolmogorov criterion can be stated in a more simplified way. Consider the particuar situation

$$
\begin{aligned}
& B(s):=\left(g_{1}(s), g_{2}(s)_{9} \ldots, g_{d}(s), 0\right) \\
& C(s):=(0,0, \ldots, 0,1)
\end{aligned}
$$

where $g_{1}, g_{2}, \ldots, g_{1}$ are linearly independent functions of $C(S)$. Then for each $x \in C(S)$ we have the linear problem $\operatorname{MPL}(x)$.

Minimize $p(v, v):=z$
Subject to

$$
\underset{(\eta, s) \in T}{\forall} \eta\left(\frac{\sum_{i=1}^{l} v_{i} g_{i}(s)}{v_{l+1}}-x(s)\right) \leqslant \gamma(\eta, s) z .
$$

For any signature ε we introduce the linear subspaces

$$
V_{L}(\varepsilon):=\left\{b \in \mathbb{R}^{l} \mid \underset{s \in \operatorname{DOM}(\varepsilon)}{\forall} \sum_{i=1}^{l} b_{i} g_{i}(s)=0\right\}
$$

and

$$
V_{R}(\varepsilon):=\left\{v \in \mathbb{R}^{l+1} \mid \underset{s \in \operatorname{DOM}(e)}{\forall}\langle B(s), v\rangle=0\right\} .
$$

Let $I: \mathbb{R}^{l} \rightarrow \mathbb{R}^{l+1}$ be the injection defined by

$$
\underset{b \in \mathbb{R}^{I}}{\forall} I(b):=(b, 0) .
$$

Then we have

$$
\begin{equation*}
V_{R}(\varepsilon)=I\left(V_{L}(\varepsilon)\right) \oplus \mathbb{R} e_{l+1} \tag{*}
\end{equation*}
$$

Let $P_{R}: \mathbb{R}^{l+1} \rightarrow V_{R}(\varepsilon)$ and $P_{L}: \mathbb{R}^{l} \rightarrow V_{L}(\varepsilon)$ be the projections associated with the spaces $V_{R}(\varepsilon)$ and $V_{L}(\varepsilon)$, respectively. Then we have

$$
P_{R} \circ I=I \circ P_{L}
$$

To prove this relation choose an element $b \in \mathbb{R}^{l}$. Then we have

$$
\underset{u \in V_{L}(\varepsilon)}{\forall}\left\langle b-P_{L} b, u\right\rangle=0,
$$

which is equivalent to

$$
\underset{v \in I\left(V_{L}(\varepsilon)\right)}{\forall}\left\langle I(b)-I \circ P_{L}(b), v\right\rangle=0 .
$$

By (*) we also have

$$
\underset{v \in V_{R}(\varepsilon)}{\forall}\left\langle I(b)-I \circ P_{L}(b), v\right\rangle=0 .
$$

Hence $I \circ P_{L}(b)$ is the projection of $I(b)$ onto $V_{R}(\varepsilon)$, i.e., $P_{R} \circ I=I \circ P_{L}$.
Theorem 3.4. (Refined linear Kolmogorov criterion). Let $\left(g_{0}, z_{0}\right)$ be a solution of MPL(x). Then there exists a real number $K_{2}>0$ such that
(a) $\underset{g \in V}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s) g(s) \leqslant-K_{2}\|g\|_{\infty} \cdot \theta_{g}\left(\tilde{\varepsilon}_{0}\right)$
(b) $\underset{g \in V}{\forall} \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s) g(s) \leqslant-K_{2}\|g\|_{\infty} \cdot \sup _{\varepsilon \in \Lambda_{0}} \theta_{g}(\varepsilon)$,
where $\theta_{g}(\varepsilon)$ denotes the angle between $V_{L}(\varepsilon)$ and $b, g=\sum_{i=1}^{l} b_{i} g_{i}$.
Proof. We can assume $g_{0}=0$. Let $g=\sum_{i=1}^{l} b_{i} g_{i}$ be given. By using Theorem 3.2 with $v=I(b)+e_{l+1}$ we have for a suitable $K_{3}>0$

$$
\begin{aligned}
& \min _{s \in \operatorname{DOM}\left(\varepsilon_{0}\right)} \varepsilon_{0}(s) g(s) \\
& \leqslant-K_{3}\left\|I(b)+e_{l+1}\right\| \sin \varphi_{v}\left(\tilde{\varepsilon}_{0}\right) \\
&=-K_{3}\left\|I(b)+e_{l+1}-P_{R}\left(I(b)+e_{l+1}\right)\right\| \\
&=-K_{3}\left\|I(b)-P_{R} \circ I(b)\right\| \\
&=-K_{3}\left\|I(b)-I \circ P_{L}(b)\right\| \\
&=-K_{3}\left\|b-P_{L}(b)\right\|=-K_{3}\|b\| \sin \theta_{g}\left(\tilde{\varepsilon}_{0}\right) \leqslant-K_{2}\|g\|_{\infty} \theta_{g}\left(\tilde{\varepsilon}_{0}\right)
\end{aligned}
$$

which proves (a).
Statement (b) follows from (a) by using the fact $\theta_{g}\left(\tilde{\varepsilon}_{0}\right) \geqslant \theta_{g}(\varepsilon)$ for each $\varepsilon \in A_{0}$.

4. A Necessary and Sufficient Condition for Strong Uniqueness

For each $r_{0}=\left\langle B, v_{0}\right\rangle /\left\langle C, v_{0}\right\rangle$ in V the linear subspace

$$
H_{0}:=\left\{y \in \mathbb{R}^{N} \mid \underset{s \in S}{\forall}\left\langle r_{0}(s) C(s)-B(s), y\right\rangle=0\right\}
$$

has dimension $N-d$. In fact, define the linear mapping $F: \mathbb{R}^{N} \rightarrow C(S)$ by setting

$$
\underset{v \in \mathbb{R}^{N}}{\forall} F(v):=\left\langle r_{0} C-B, v\right\rangle .
$$

Then we have $\operatorname{KER}(F)=H_{0}$ and $\operatorname{IM}(F)=\mathscr{L}\left(r_{0}\right)$, which proves $N=\operatorname{dim} H_{0}+d$.

Theorem 4.1. Let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Consider the following conditions:
(a) There exist points $s_{i} \in S_{0}, i=1,2, \ldots, d$, such that the vectors

$$
r_{0}\left(s_{i}\right) C\left(s_{i}\right)-B\left(s_{i}\right) \in \mathbb{R}^{N},
$$

$i=1,2, \ldots, d$, are linearly independent.
(b) There exists a constant $K:=K(x)>0$ such that

$$
\underset{(v, z) \in Z_{x}}{\forall} z \geqslant z_{0}+K \varphi_{v}
$$

Then $(\mathrm{a}) \Rightarrow$ (b). Moreover, if $\gamma(\eta, s)>0$ for all $(\eta, s) \in T$ then we also have (b) \Rightarrow (a).

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$. We show that $H_{0}=V\left(\tilde{\varepsilon}_{0}\right)$. The inclusion $H_{0} \subset V\left(\tilde{\varepsilon}_{0}\right)$ is clear. On the other hand there exist signatures $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}$ in Λ_{0} such that

$$
\left\{s_{1}, s_{2}, \ldots, s_{d}\right\} \subset \bigcup_{i=1}^{k} \mathrm{DOM}\left(\varepsilon_{i}\right)
$$

The linear subspace

$$
H^{\#}:=\left\{v \in \mathbb{R}^{N} \mid\left\langle r_{0}\left(s_{i}\right) C\left(s_{i}\right)-B\left(s_{i}\right), v\right\rangle=0, i=1,2, \ldots, d\right\}
$$

has dimension $N-d$ and contains $V\left(\tilde{\varepsilon}_{0}\right)$. Thus we have

$$
H_{0} \subset V\left(\tilde{\varepsilon}_{0}\right) \subset H^{\#}
$$

Since $\operatorname{dim} H_{0}=N-d$, we have

$$
H_{0}=V\left(\tilde{\varepsilon}_{0}\right)=H^{\#}
$$

Consequently we have $\varphi_{v}=\varphi_{v}\left(\tilde{\varepsilon}_{0}\right)$ for each $v \in \mathbb{R}^{N}$.
Let (v, z) be in Z_{x} and let $r=\langle B, v\rangle /\langle C, v\rangle$. By theorem 3.3(a) there exist $K_{1}>0$ and a pair $\left(\varepsilon_{0}(s), s\right) \in M_{0}$ such that

$$
\varepsilon_{0}(s)\left(r_{0}(s)-r(s)\right) \leqslant-K_{1} \varphi_{v}\left(\tilde{\varepsilon}_{0}\right)
$$

Then we have

$$
\begin{aligned}
\|\gamma\|_{\infty}\left(z-z_{0}\right) & \geqslant \gamma\left(\varepsilon_{0}(s), s\right)\left(z-z_{0}\right) \\
& \geqslant \varepsilon_{0}(s)(r(s)-x(s))-\varepsilon_{0}(s)\left(r_{0}-x(s)\right) \\
& =-\varepsilon_{0}(s)\left(r_{0}(s)-r(s)\right) \\
& \geqslant K_{1} \varphi_{v}\left(\tilde{\varepsilon}_{0}\right)
\end{aligned}
$$

which implies

$$
z-z_{0} \geqslant K \varphi_{v}
$$

where $K:=K_{1} /\|\gamma\|_{\infty}$.
(b) \Rightarrow (a). Consider

$$
S_{1}:=\operatorname{span}\left\{r_{0}(s) C(s)-B(s) \in \mathbb{R}^{N} \mid s \in S_{0}\right\}
$$

let $d_{1}:=\operatorname{dim} S_{1}$ and assume by contradiction $d_{1}<d$. Since $\operatorname{dim} S_{1}^{\perp}=$ $N-d_{1}, \operatorname{dim} H_{0}^{\perp}=d$, and $d-d_{1}>0$, we have

$$
\operatorname{dim}\left(S_{1}^{\perp} \cap H_{0}^{\perp}\right) \geqslant 1
$$

Now we claim that we can choose $v \in S_{1}^{\perp} \cap H_{0}^{\perp}, v \neq 0$, such that

$$
\underset{\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}}{\forall} \varepsilon_{0}(s)\left\langle B(s)-r_{0}(s) C(s), v\right\rangle \leqslant 0 .
$$

If not, there exists for each $v \in S_{1}^{\perp} \cap H_{0}^{\perp}, v \neq 0$, a point $\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}$ such that

$$
\varepsilon_{0}(s)\langle y(s), v\rangle>0,
$$

where we have used the abbreviation

$$
y(s):=B(s)-r_{0}(s) C(s) .
$$

Consequently, the convex hull of the linear functionals

$$
x_{s}^{*}: v \mapsto \varepsilon_{0}(s)\langle y(s), v\rangle,
$$

($\left.\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}$, defined on $H_{0}^{\perp} \cap S_{1}^{\perp}$ has a non-empty interior. If not, there exists $x^{*} \in\left(H_{0}^{\perp} \cap S_{1}^{\perp}\right)^{*}$ orthogonal to x_{s}^{*} for all $\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}$. So, for some $v \in H_{0}^{\perp} \cap S_{0}^{\perp}$ we would have

$$
\begin{aligned}
\forall \underset{\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}}{\forall} 0 & =\left\langle x_{s}^{*}, x^{*}\right\rangle=x_{s}^{*}(v) \\
& =\varepsilon_{0}(s)\langle y(s), v\rangle,
\end{aligned}
$$

which is impossible. Further we claim

$$
0 \in \operatorname{con}\left\{x_{s}^{*} \in\left(H_{0}^{\perp} \cap S_{1}^{\perp}\right)^{*} \mid\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}\right\} .
$$

If not, there exists an element $v \in\left(S_{1}^{\perp} \cap H_{0}^{\perp}\right) \backslash\{0\}$ such that for all elements

$$
a \in \operatorname{con}\left\{x_{s}^{*} \in\left(S_{1}^{\perp} \cap H_{0}^{\perp}\right)^{*} \mid\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}\right\}
$$

we have $\langle a, v\rangle \leqslant 0$, which implies

$$
\varepsilon_{0}(s)\langle y(s), v\rangle \leqslant 0
$$

for all $\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}$.
Consequently, there exist real numbers

$$
\tau_{1}, \tau_{2}, \ldots, \tau_{k}>0
$$

and points

$$
\left(\varepsilon_{0}\left(s_{1}\right), s_{1}\right),\left(\varepsilon_{0}\left(s_{2}\right), s_{2}\right), \ldots,\left(\varepsilon_{0}\left(s_{k}\right), s_{k}\right) \in M_{0} \backslash \Gamma_{0}
$$

such that $\tau_{1}+\tau_{2}+\cdots+\tau_{k}=1$ and

$$
\underset{v \in S_{1}^{\perp} \cap H_{0}^{\perp}}{\forall}\left\langle\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right), v\right\rangle=0
$$

By assumption, there exist d_{1} points $p_{1}, p_{2}, \ldots, p_{d_{1}}$ in S_{0} such that the set of vectors

$$
\left\{y\left(p_{1}\right), y\left(p_{2}\right), \ldots, y\left(p_{d_{1}}\right)\right\}
$$

is linearly independent. Choose a finite number signatures

$$
\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \in A_{0}
$$

such that

$$
\left\{p_{1}, p_{2}, \ldots, p_{d_{1}}\right\} \subset \bigcup_{i=1}^{n} \operatorname{DOM}\left(\varepsilon_{i}\right)
$$

Denote the points in $\cup \mathrm{DOM}\left(\varepsilon_{i}\right)$ by $p_{1}, p_{2}, \ldots, p_{m}$. Then there exist real numbers $\rho_{1}, \rho_{2}, \ldots, \rho_{m}>0$ such that

$$
\sum_{i=1}^{m} p_{i} G\left(\varepsilon_{0}\left(p_{i}\right), p_{i}\right)=0
$$

which implies

$$
z:=\sum_{i=1}^{m} \rho_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)=0 .
$$

Choose a basis $v_{1}, v_{2}, \ldots, v_{d_{1}}$ of S_{1}. Then the matrix

$$
\left(\varepsilon_{0}\left(p_{i}\right)\left\langle y\left(p_{i}\right), v_{j}\right\rangle\right)_{\substack{j=1,2, \ldots, d_{\mathrm{L}} \\ i=1,2, \ldots, m}}
$$

has rank d_{1}, and consequently the linear system

$$
\sum_{i=1}^{m} \lambda_{i} \varepsilon_{0}\left(p_{i}\right)\left\langle y\left(p_{i}\right), v_{j}\right\rangle=-\left\langle\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right), v_{j}\right\rangle,
$$

$j=1,2, \ldots, d_{1}$, has a solution

$$
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=\mathbb{R}^{m}
$$

With the aid of this solution define the element

$$
\tilde{y}:=\sum_{i=1}^{m} \lambda_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)+\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right) .
$$

Each element $v \in \mathbb{R}^{N}$ can be represented as $v=w_{0}+w_{1}+w_{2}$, where $w_{0} \in H_{0}$, $w_{1} \in H_{0}^{\perp} \cap S_{1}$, and $w_{2} \in H_{0}^{\perp} \cap S_{1}^{\perp}$. Using this representation, an easy calculation shows

$$
\underset{v \in \mathbb{R}^{N}}{\forall}\langle\tilde{y}, v\rangle=0 .
$$

We can find $\tau \in \mathbb{R}$ such that all coefficients

$$
\tilde{\rho}_{i}:=\lambda_{i}+\tau \rho_{i}
$$

$i=1,2, \ldots, m$, are positive and at least one is zero. Without loss of generality we can assume $\tilde{\rho}_{i}>0$ for $i=1,2, \ldots, m_{1}<m$ and $\tilde{\rho}_{i}=0$ for $i=m_{1}+1$, $m_{1}+2, \ldots, m$. Thus we have

$$
\tilde{y}+\tau z=\sum_{i=1}^{m_{1}} \tilde{\rho}_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)+\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right) .
$$

Of course, we also have

$$
\underset{v \in \mathbb{R}^{N}}{\forall}\langle\tilde{y}+\tau z, v\rangle=0 .
$$

Now assume ε_{0} restricted to the set

$$
\left\{p_{1}, p_{2}, \ldots, p_{m_{1}}\right\}
$$

is critical. Then there exist real numbers

$$
\hat{\rho}_{1}, \hat{\rho}_{2}, \ldots, \hat{\rho}_{m_{1}} \geqslant 0
$$

such that $\hat{\rho}_{1}+\hat{\rho}_{2}+\cdots+\hat{\rho}_{m_{1}}=1$ and

$$
\tilde{z}:=\sum_{i=1}^{m_{1}} \hat{\rho}_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)=0 .
$$

We can find $\tilde{\tau}>0$ such that all coefficients

$$
\bar{\rho}_{i}:=\left(\tilde{\rho}_{i}-\tilde{\tau} \hat{\rho}_{i}\right),
$$

$i=1,2, \ldots, m_{1}$, are non-negative and at least one is zero. Without loss of generality we can assume $\bar{\rho}_{i}>0$ for $i=1,2, \ldots, m_{2}<m_{1}$ and $\bar{\rho}_{i}=0$ for $i=m_{2}+1, m_{2}+2, \ldots, m_{1}$. Thus we have

$$
\tilde{y}+\tau z-\tilde{\tau} \tilde{z}=\sum_{i=1}^{m_{2}} \bar{\rho}_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)+\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right)
$$

which satisfies the relation

$$
\underset{v \in \mathbb{R}^{N}}{\forall}\langle\tilde{y}+\tau z-\tilde{\tau} \tilde{z}, v\rangle=0 .
$$

By repeating this process, if necessary, we can assume that the restriction of ε_{0} to the set $\left\{p_{1}, p_{2}, \ldots, p_{m_{2}}\right\}, 0 \leqslant m_{2}<m$ is not critical,

The points $p_{1}, p_{2}, \ldots, p_{m_{2}}, s_{1}, s_{2}, \ldots, s_{k}$ satisfy the relation

$$
\sum_{i=1}^{m_{2}} \bar{\rho}_{i} \varepsilon_{0}\left(p_{i}\right) y\left(p_{i}\right)+\sum_{i=1}^{k} \tau_{i} \varepsilon_{0}\left(s_{i}\right) y\left(s_{i}\right)=0
$$

with $\bar{\rho}_{i}>0$ and $\tau_{i}>0$. Then we also have

$$
\sum_{i=1}^{m_{2}} \bar{\rho}_{i} G\left(\varepsilon_{0}\left(p_{i}\right), p_{i}\right)+\sum_{i=1}^{k} \tau_{i} G\left(\varepsilon_{0}\left(s_{i}\right), s_{i}\right)=0
$$

i.e., the restriction of ε_{0} to the set

$$
\left\{p_{1}, p_{2}, \ldots, p_{m_{2}}\right\} \cup\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}
$$

is critical. Then there exists $\bar{\varepsilon} \in A_{0}$ such that

$$
\operatorname{DOM}(\bar{\varepsilon}) \cap\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \neq \varnothing
$$

which contradicts the definition of Γ_{0}.
Thus, our first claim is proved, i.e., there exists $v \in H_{0}^{\perp} \cap S_{1}^{\perp}, v \neq 0$, such that

$$
\underset{\left(\varepsilon_{0}(s), s\right) \in M_{0} \backslash \Gamma_{0}}{\forall} \varepsilon_{0}(s)\left\langle B(s)-r_{0}(s) C(s), v\right\rangle \leqslant 0 .
$$

Since $v \in S_{1}^{\perp}$, we also have

$$
\underset{\left(\varepsilon_{0}(s), s\right) \in M_{0}}{\forall} \varepsilon_{0}(s)\left\langle B(s)-r_{0}(s) C(s), v\right\rangle \leqslant 0 .
$$

Define a sequence of positive real numbers $\left(\tau_{n}\right)$ such that $\tau_{n}<1, \tau_{n} \rightarrow 0$ for $n \rightarrow \infty$, and

$$
v_{n}:=\left(1-\tau_{n}\right) v_{0}+\tau_{n} v
$$

belongs to U. Since $v_{0} \in H_{0}$ and $v \in H_{0}^{\perp}$, we have

$$
\begin{aligned}
\sin \varphi_{n} & =\frac{\left\|v_{n}-P v_{n}\right\|}{\left\|v_{n}\right\|} \\
& =\frac{\tau_{n}\|v\|}{\left\|v_{n}\right\|} \\
& =\frac{\tau_{n}\|v\|}{\left\|\left(1-\tau_{n}\right) v_{0}+\tau_{n} v\right\|} \\
& \geqslant K_{0} \tau_{n}
\end{aligned}
$$

with a suitable constant $K_{0}>0, \varphi_{n}:=\varphi_{v_{n}}$, and where P denotes the projection associated with H_{0}.

For each $n \in \mathbb{N}$ we define a real number z_{n} and a point $\left(\eta_{n}, s_{n}\right) \in T$ such that

$$
\begin{aligned}
z_{n} & =\frac{\eta_{n}\left(r_{n}\left(s_{n}\right)-x\left(s_{n}\right)\right)}{\gamma\left(\eta_{n}, s_{n}\right)} \\
& =\sup \left\{\left.\frac{\eta\left(r_{n}(s)-x(s)\right)}{\gamma(\eta, s)} \in \mathbb{R} \right\rvert\,(\eta, s) \in T\right\},
\end{aligned}
$$

where $r_{n}:=\left\langle B, v_{n}\right\rangle /\left\langle C, v_{n}\right\rangle$. (We remark that the existence of such points $\left(\eta_{n}, s_{n}\right) \in T$ follows from the assumption $\gamma>0$.)

There is an infinite subset $N_{0} \subset \mathbb{N}$ such that either

$$
\left\{\left(\eta_{n}, s_{n}\right) \in T \mid n \in N_{0}\right\}
$$

consists of a single point, say $(\bar{\eta}, \bar{s})$, or, by compactness of T,

$$
\left\{\left(\eta_{n}, s_{n}\right) \in T \mid n \in N_{0}\right\}
$$

has an accumulation point $(\bar{\eta}, \bar{s})$ in T. By hypothesis, we have with a suitable constant $K_{1}>0$ and for all $n \in N_{0}$ the inequality

$$
\begin{aligned}
0 & <K K_{1} \tau_{n} \leqslant K \varphi_{n} \leqslant z_{n}-z_{0} \\
& \leqslant \frac{\eta_{n}\left(r_{n}\left(s_{n}\right)-x\left(s_{n}\right)\right)}{\gamma\left(\eta_{n}, s_{n}\right)}-\frac{\eta_{n}\left(r_{0}\left(s_{n}\right)-x\left(s_{n}\right)\right)}{\gamma\left(\eta_{n}, s_{n}\right)} \\
& =\frac{\tau_{n} \eta_{n}\left\langle B\left(s_{n}\right)-r_{0}\left(s_{n}\right) C\left(s_{n}\right), v\right\rangle}{\gamma\left(\eta_{n}, s_{n}\right)\left\langle C\left(s_{n}\right), v_{n}\right\rangle}
\end{aligned}
$$

which implies

$$
0<K K_{1} \leqslant \frac{\eta_{n}\left\langle B\left(s_{n}\right)-r_{0}\left(s_{n}\right) C\left(s_{n}\right), v\right\rangle}{\gamma\left(\eta_{n}, s_{n}\right)\left\langle C\left(s_{n}\right), v_{n}\right\rangle} .
$$

By continuity and since $(\bar{\eta}, \bar{s}) \in M_{0}$ we have

$$
\begin{aligned}
0<K K_{1} & \leqslant \frac{\bar{\eta}\left\langle B(\bar{s})-r_{0}(\bar{s}) C(\bar{s}), v\right\rangle}{\gamma(\bar{\eta}, \bar{s})\left\langle C(\bar{s}), v_{0}\right\rangle} \\
& \leqslant 0
\end{aligned}
$$

Following the remark after Theorem 3.3 we introduce the set

$$
Z_{x}^{\#}:=\left\{(v, z) \in Z_{x}\| \| \bar{v} \|=1\right\} .
$$

From Theorem 4.1 we can derive the following generalization of a result of Cheney and Loeb [6]:

Theorem 4.2. Let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Then condition (b) of Theorem 4.1 is equivalent to the condition
(c) There exists a constant $K_{1}:=K_{1}(x)>0$ such that

$$
\underset{(v, z) \in Z_{x}^{*}}{\forall} z \geqslant z_{0}+K_{1} \cdot \operatorname{dist}\left(v, H_{0}\right) ;
$$

consequently condition (a) of Theorem 4.1 implies (c), and if $\gamma(\eta, s)>0$ for all $(\eta, s) \in T$ then we also have $(\mathrm{c}) \Rightarrow(\mathrm{a})$.

Proof. (b) \Rightarrow (c). Using the remark after Theorem 3.3 we have the estimate

$$
\begin{aligned}
\forall(v, z) \in Z_{x}^{*} & \geqslant z_{0}+K\|v\| \varphi_{v} \\
& \geqslant z_{0}+K_{1}\|v\| \sin \varphi_{v} \\
& =z_{0}+K_{1}\|v-P v\| \\
& =z_{0}+K_{1} \operatorname{dist}\left(v, H_{0}\right) .
\end{aligned}
$$

$(\mathrm{c}) \Rightarrow(\mathrm{b})$. Choose $(v, z) \in Z_{x}$. Then we have

$$
\begin{aligned}
z & \geqslant z_{0}+K_{1} \operatorname{dist}\left(\frac{v}{\|\bar{v}\|}, H_{0}\right) \\
& =z_{0}+K_{1} \cdot \frac{\|v-P v\|}{\|\bar{v}\|} \\
& \geqslant z_{0}+K_{1} \cdot \frac{\|v-P v\|}{\|v\|} \\
& \geqslant z_{0}+K \varphi_{v} .
\end{aligned}
$$

5. Strong Unicity in the Normal Case

An element $r_{0} \in V$ is said to be normal iff $\operatorname{dim} \mathscr{L}\left(r_{0}\right)=N-1$. A function x in L is also said to be normal iff there exists a solution $\left(r_{0}, z_{0}\right)$ of $\operatorname{MPR}(x)$ such that r_{0} is normal. For each $r \in V$ we can find $v \in U$ such that

$$
r=\frac{\langle B, v\rangle}{\langle C, v\rangle} \quad \text { and } \quad\left\langle C\left(s_{0}\right), v\right\rangle=1
$$

for some s_{0}. We denote by Z_{x}^{*} the set

$$
\left\{(v, z) \in Z_{x} \mid\left\langle C\left(s_{0}\right), v\right\rangle=1\right\} .
$$

If r_{0} is normal, then $\operatorname{dim} H_{0}=1$. This implies that there exists a unique $v_{0} \in H_{0}$ such that

$$
r_{0}=\frac{\left\langle B, v_{0}\right\rangle}{\left\langle C, v_{0}\right\rangle} \quad \text { and } \quad\left\langle C\left(s_{0}\right), v_{0}\right\rangle=1 .
$$

We introduce the linear subspace

$$
R_{N-1}:=\left\{w \in \mathbb{R}^{N} \mid\left\langle C\left(s_{0}\right), w\right\rangle=0\right\}
$$

and we denote by $P: \mathbb{R}^{N} \rightarrow H_{0}$ the orthogonal projection associated with H_{0}.

Lemma 5.1. Let x be a normal point and let $\left(v_{0}, z_{0}\right) \in Z_{x}^{*}$ be a solution of $\operatorname{MPR}(x)$. Suppose there exists a constant $K>0$ such that

$$
\underset{(v, z) \in Z_{x}}{\forall} z-z_{0} \geqslant K \sin \varphi_{v} .
$$

Then there exists a constant $K_{1}>0$ such that

$$
\underset{(v, z) \in Z_{x}^{*}}{\forall} z-z_{0} \geqslant \frac{K_{1}\left\|v-v_{0}\right\|}{\|v\|}
$$

Proof. Let $(v, z) \in Z_{x}^{*}$. Then $v-v_{0}$ is in R_{N-1}. Since $H_{0} \cap R_{N-1}=\{0\}$, the restriction of P to R_{N-1} has norm $0<\mu<1$. Then we have

$$
\begin{aligned}
z-z_{0} & \geqslant K \sin \varphi_{v} \\
& =\frac{K\|v-P v\|}{\|v\|} \\
& =\frac{K\left\|v-v_{0}-P\left(v-v_{0}\right)\right\|}{\|v\|} \\
& \geqslant \frac{K(1-\mu)\left\|v-v_{0}\right\|}{\|v\|} \\
& =: \frac{K_{1}\left\|v-v_{0}\right\|}{\|v\|}
\end{aligned}
$$

Theorem 5.2. Let x be a normal point and let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Then the following statements are equivalent:
(a) There exists a constant $K_{a}>0$ such that

$$
\underset{(v, z) \in Z_{x}}{\forall} z \geqslant z_{0}+K_{a} \varphi_{v}
$$

(b) There exists a constant $K_{b}>0$ such that

$$
\underset{(r, z) \in V_{x}}{\forall} z \geqslant z_{0}+K_{b}\left\|r-r_{0}\right\|_{\infty}
$$

(c) For each $\rho>0$ there exists a constant $K_{\rho}>0$ such that

$$
\underset{\substack{(v, z) \in Z_{x}^{*} \\\|v v\| \rho}}{\forall} z \geqslant z_{0}+K_{\rho}\left\|v-v_{0}\right\|
$$

Proof. (a) \Rightarrow (c). By Lemma 5.1 there exists a constant $K>0$ such that

$$
\underset{(v, z) \in Z_{x}^{*}}{\forall} z \geqslant z_{0}+\frac{K\left\|v-v_{0}\right\|}{\|v\|}
$$

which implies (c).
(c) \Rightarrow (b). Assume by contradiction:

$$
\underset{n \in \mathbb{N}}{\forall} \underset{\left(v_{n}, z_{n}\right) \in Z_{x}}{\exists} z_{n}-z_{0}<\frac{1}{n}\left\|r_{n}-r_{0}\right\|_{\infty},
$$

where $r_{n}=\left\langle B, v_{n}\right\rangle /\left\langle C, v_{n}\right\rangle$. We can assume that $\left(v_{n}, z_{n}\right) \in Z_{x}^{*}$ and $v_{n} /\left\|v_{n}\right\| \rightarrow \bar{v}$.

We claim that $\left\|r_{n}-r_{0}\right\|_{\infty}$ is bounded. In fact, since

$$
\underset{(\eta, s) \in T}{\forall}\|\gamma\|_{\infty} z \geqslant \eta(r(s)-x(s))
$$

it follows that

$$
\begin{equation*}
z \geqslant\|r-x\|_{\infty} /\|\gamma\|_{\infty} \tag{}
\end{equation*}
$$

We have

$$
0<\frac{z_{n}-z_{0}}{\left\|r_{n}-r_{0}\right\|_{\infty}}<\frac{1}{n}
$$

which implies

$$
0<\frac{z_{n}-z_{0}}{\left\|x-r_{n}\right\|_{\infty}+\left\|x-r_{0}\right\|_{\infty}}<\frac{1}{n}
$$

consequently

$$
0<\frac{z_{n}-z_{0}}{\|\gamma\|_{\infty}\left(z_{n}+z_{0}\right)}<\frac{1}{n}
$$

which implies that $\left(z_{n}\right)$ is bounded and, by (${ }^{*}$), that $\left\|r_{n}-r_{0}\right\|_{\infty}$ is also bounded. It follows that $z_{n} \rightarrow z_{0}$.

We claim that also the sequence $\left(\left\|v_{n}\right\|\right)$ is bounded. If not, then we have

$$
\left\langle C\left(s_{0}\right), \bar{v}\right\rangle=0 .
$$

Choose a $\tau>0$ such that $v_{0}+\tau \bar{v} \in U$ and introduce the abbreviation $w_{n}:=$ $v_{n} /\left\|v_{n}\right\|$. Then we have for each $n \in N$ and $(\eta, s) \in T$:

$$
\begin{aligned}
& \eta\left(\frac{\left\langle B(s), v_{0}+\tau w_{n}\right\rangle}{\left\langle C(s), v_{0}+\tau w_{n}\right\rangle}-x(s)\right) \\
& \quad=\frac{\eta\left\langle C(s), v_{0}\right\rangle}{\left\langle C(s), v_{0}+\tau w_{n}\right\rangle}\left[\frac{\left\langle B(s), v_{0}\right\rangle}{\left\langle C(s), v_{0}\right\rangle}-x(s)\right] \\
& \quad+\frac{\eta \tau\left\langle C(s), w_{n}\right\rangle}{\left\langle C(s), v_{0}+\tau w_{n}\right\rangle}\left[\frac{\left\langle B(s), w_{n}\right\rangle}{\left\langle C(s), w_{n}\right\rangle}-x(s)\right] \\
& \quad \leqslant \frac{\left\langle C(s), z_{0} v_{0}+z_{n} \tau w_{n}\right\rangle}{\left\langle C(s), v_{0}+\tau w_{n}\right\rangle} \gamma(\eta, s) .
\end{aligned}
$$

For $n \rightarrow \infty$ we obtain

$$
\eta\left(\frac{\left\langle B(s), v_{0}+\tau \bar{v}\right\rangle}{\left\langle C(s), v_{0}+\tau \bar{v}\right\rangle}-x(s)\right) \leqslant z_{0} \gamma(\eta, s) .
$$

Consequently $\left(v_{0}+\tau \bar{v}, z_{0}\right)$ is also a solution of $\operatorname{MPR}(x)$, which belongs to Z_{x}^{*}. From (c) we conclude

$$
v_{0}+\tau \bar{v}=v_{0}
$$

which leads to $\bar{v}=0$, contradicting $\|\bar{v}\|=1$. Consequently, the sequence $\left(\left\|v_{n}\right\|\right)$ is bounded.

By hypothesis there exists a suitable constant $K>0$ such that

$$
\underset{n \in \mathbb{N}}{\forall} \frac{1}{n}\left\|r_{n}-r_{0}\right\|_{\infty}>z_{n}-z_{0} \geqslant K\left\|v_{n}-v_{0}\right\|,
$$

which implies $v_{n} \rightarrow v_{0}$. Thus, there exists an $\rho>0$ and an $n_{0} \in \mathbb{N}$ such that

$$
\underset{n \geqslant n_{0}}{\forall} \underset{s \in S}{\forall}\left\langle C(s), v_{n}\right\rangle \geqslant \rho>0 .
$$

So we have

$$
\begin{aligned}
\left\|r_{n}-r_{0}\right\|_{\infty} & \leqslant \frac{\left\|\left\langle B-r_{0} C, v_{n}-v_{0}\right\rangle\right\|_{\infty}}{\rho} \\
& \leqslant \frac{\left\|B-r_{0} C\right\|_{\infty}}{\rho}\left\|v_{n}-v_{0}\right\| \\
& \leqslant \frac{\left\|B-r_{0} C\right\|_{\infty}}{\rho \cdot K \cdot \eta}\left\|r_{n}-r_{0}\right\|_{\infty}
\end{aligned}
$$

which implies

$$
1 \leqslant \frac{1}{n} \cdot \frac{\left\|B-r_{0} C\right\|_{\infty}}{\rho K}
$$

For $n \rightarrow \infty$ we obtain $1 \leqslant 0$, which is impossible.
(b) \Rightarrow (a). Since for all $w \in R_{N_{-1}} \backslash\{0\}$ we have

$$
\left\|\left\langle B-r_{0} C, w\right\rangle\right\|_{\infty}>0,
$$

there exists an $\alpha>0$ such that

$$
\underset{w \in R_{N-1}}{\forall}\left\|\left\langle B-r_{0} C, w\right\rangle\right\|_{\infty} \geqslant \alpha\|w\| .
$$

Let $(v, z) \in Z_{x}$ and $r:=\langle B, v\rangle /\langle C, v\rangle$. Then we have

$$
\begin{aligned}
\left\|r-r_{0}\right\|_{\infty} & \geqslant \frac{\left\|\left\langle B-r_{0} C, v-v_{0}\right\rangle\right\|_{\infty}}{\|C\|_{\infty} \cdot\|v\|} \\
& \geqslant \frac{\alpha\left\|v-v_{0}\right\|}{\|C\|_{\infty}\|v\|} \\
& =\frac{\alpha}{2\|C\|_{\infty}} \cdot \frac{\left\|v-v_{0}\right\|+\left\|v-v_{0}\right\|}{\|v\|} \\
& \geqslant \frac{\alpha}{2\|C\|_{\infty}} \cdot \frac{\left\|v-v_{0}-P\left(v-v_{0}\right)\right\|}{\|v\|} \\
& =\frac{\alpha}{2\|C\|_{\infty}} \cdot \frac{\|v-P v\|}{\|v\|} \\
& =\frac{\alpha}{2\|C\|_{\infty}} \sin \varphi_{v} \geqslant K \varphi_{v},
\end{aligned}
$$

where $K>0$ is a suitable constant. The last inequality and (b) imply

$$
z \geqslant z_{0}+K_{b}\left\|r-r_{0}\right\|_{\infty} \geqslant z_{0}+K_{a} \varphi_{v},
$$

where $K_{a}:=K \cdot K_{b}$.

Theorem 5.3. Let x be a normal point and let $\left(r_{0}, z_{0}\right)$ be a solution of $\operatorname{MPR}(x)$. Consider the following conditions:
(a) There exist points $s_{i} \in S_{0}, i=1,2, \ldots, N-1$, such that the vectors

$$
r_{0}\left(s_{i}\right) C\left(s_{i}\right)-B\left(s_{i}\right) \in \mathbb{R}^{N},
$$

$i=1,2, \ldots, N-1$, are linearly independent.
(b) There exists a constant $K:=K(x)>0$ such that

$$
\underset{(r, z) \in \boldsymbol{V}_{x}}{\forall} z \geqslant z+K\left\|r-r_{0}\right\|_{\infty} .
$$

Then $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Moreover, if $\gamma(\eta, s)>0$ for all $(\eta, s) \in T$ then we also have (b) \Rightarrow (a).

Proof. The theorem follows from Theorems 4.1 and 5.2.
It is clear that we have a similar result for the local strong uniqueness in the parameter space using condition (c) of Theorem 5.2.
In the linear case (compare Section 3) we have $\mathscr{L}(r)=V$ for all $r \in V$. So the condition (a) of Theorem 5.3 reads:

There exist points $s_{i} \in S_{0}, i=1,2, \ldots, l:=\operatorname{dim} V$ such that the vectors

$$
\left(g_{1}\left(s_{i}\right), g_{2}\left(s_{2}\right), \ldots, g_{d}\left(s_{i}\right)\right) \in \mathbb{R}^{\prime}
$$

$i=1,2, \ldots, l$ are linearly independent.

6. Some Remarks

In Theorems 3.2 and 3.3 the signature $\tilde{\varepsilon}_{0}$ cannot be replaced by ε_{0} as the following example shows.

Example 6.1. Let $S=[-1,1], \gamma(\eta, s)=1$, and $V:=\operatorname{span}(g)$, where $g(s)=s$ for $s \in S$. Define a function $x \in C(S)$ by

$$
\begin{aligned}
& x(s):=1 \quad \text { if } \quad 0<s \leqslant 1 \\
& :=1-s^{2} \quad \text { if } \quad-1 \leqslant s \leqslant 0 .
\end{aligned}
$$

Then the function $g_{0}(s)=0$ defines a solution of the minimization problem $\operatorname{MPR}(x)$. We have

$$
\begin{aligned}
M_{0} & =\{(-1, s) \in T \mid s \in[0,1]\} ; \\
\Gamma_{0} & =\{(-1,0)\}, \\
H_{0} & =V\left(\varepsilon_{0}\right)=\left\{\left(0, v_{2}\right) \in \mathbb{R}^{2} \mid v_{2} \in \mathbb{R}\right\} ;
\end{aligned}
$$

and $V\left(\tilde{\varepsilon}_{0}\right)=\mathbb{R}^{2}$.

If the statement (a) of Theorem 3.3 would be true for ε_{0} instead of $\tilde{\varepsilon}_{0}$, then for $r(s)=s$ we would have

$$
\begin{aligned}
0=\min _{s \in[0,1]} s & =\min _{s \in[0,1]}-1(0-s) \\
& \leqslant-K_{1} \varphi_{v}\left(\varepsilon_{0}\right)<0 .
\end{aligned}
$$

This example also shows that " φ^{2}-strong uniqueness" does not imply strong uniqueness. With the abbreviation $\alpha:=v_{1} / v_{2}$ we have

$$
\begin{aligned}
\|x-\alpha g\|_{\infty}-\|x\|_{\infty} & =\frac{\alpha^{2}}{4} \quad \text { if } \quad \alpha \in[0,2] \\
& =\alpha-1 \quad \text { if } \quad \alpha \geqslant 2 \\
& =-\alpha \quad \text { if } \quad \alpha \leqslant 0
\end{aligned}
$$

Since we have

$$
\sin \varphi_{v}=\sqrt{\frac{\alpha^{2}}{1+\alpha^{2}}}
$$

we can find a constant $K>0$ such that

$$
\left\|x-\frac{v_{1}}{v_{2}} g\right\|_{\infty} \geqslant K \varphi_{v}^{2}
$$

hence $g_{0}=0$ is a " φ-strongly unique" solution of $\operatorname{MPR}(x)$.
But there does not exist a constant $K_{0}>0$ such that

$$
\left\|x-\frac{v_{1}}{v_{2}} g\right\|_{\infty}-\|x\|_{\infty} \geqslant K_{0} \varphi_{v}
$$

Otherwise we would have

$$
\|x-\alpha g\|_{\infty}-\|x\|_{\infty}=\frac{\alpha^{2}}{4} \geqslant K \sin \varphi=\frac{K|\alpha|}{\sqrt{1+\alpha^{2}}}
$$

for all $\alpha \in[0,2]$. This implies

$$
\frac{\sqrt{1+\alpha^{2}} \cdot|\alpha|}{4} \geqslant K
$$

for all $\alpha \in[0,2]$, which is impossible. Hence g_{0} is not a strongly unique solution of MPR (x). Of course, we could also have derived this result from Theorem 4.1.

The next example shows that the condition $\gamma(\eta, s)>0$ is necessary for proving the implication $(b) \Rightarrow$ (a) of Theorem 4.1.

Example 6.2. Let $S=[0,1], \gamma(\eta, s)=(1-\eta) / 2$, and $V:=\operatorname{span}(g)$, where $g(s)=s$ for each $s \in S$. Define a function $x \in C(S)$ by $x(s)=s^{2}$ for each $s \in S$.

Then $(0,1)$ is a solution of $\operatorname{MPR}(x)$. We have

$$
M_{0}=\{(1,0),(-1,1)\}
$$

and

$$
\Gamma_{0}=\{(1,0)\} .
$$

So condition (a) of Theorem 4.1 is not satisfied.
Since each feasible point (v, z) satisfies the inequality $\alpha:=v_{1} / v_{2} \leqslant 0$, we have

$$
\begin{aligned}
z-z_{0} & =\|x-\alpha g\|_{\infty}-\|x\|_{\infty} \\
& =1-\alpha-1 \\
& =-\alpha=|\alpha|\|g\|,
\end{aligned}
$$

i.e., $(0,1)$ is a strongly unique solution of $\operatorname{MPR}(x)$.

In the linear case we can replace the condition $\gamma(\eta, s)>0$ in the implication (b) \Rightarrow (a) of Theorem 4.1 by another one. Define the sets

$$
\begin{aligned}
S^{+} & :=\{s \in S \mid \gamma(1, s)=0\}, \\
S^{-} & :=\{s \in S \mid \gamma(-1, s)=0\},
\end{aligned}
$$

$T^{+}:=\{1\} \times S^{+}$, and $T^{-}:=\{-1\} \times S^{-}$. Then we have:

Theorem 6.3. Assume that there exists a function $\tilde{g} \in V$ such that $\tilde{g}(s)>0$ on S^{+}and $\tilde{g}(s)<0$ on S^{-}. Let $\left(g_{0}, z_{0}\right)$ be a solution of $\operatorname{MPL}(x)$.

If there exists a constant $K>0$ such that

$$
\underset{(g, z) \in V_{x}}{\forall} z-z_{0} \geqslant K\left\|g-g_{0}\right\|_{\infty},
$$

then the condition (a) of Theorem 4.1 is fulfilled.
Proof. There exists an open set W containing $T^{+} \cup T^{-}$such that $\eta \tilde{g}(s)>0$ for each $(\eta, s) \in W$. Let $\beta>0$ be such that $\gamma(\eta, s) \geqslant \beta>0$ for all
(η, s) in the compact set $T \backslash W$ and choose $\alpha>0$ so small that $\beta>\alpha\|\tilde{g}\|_{\infty}$. Then

$$
\bar{\gamma}(\eta, s):=\gamma(\eta, s)+\alpha \eta \tilde{g}(s)
$$

is positive in T.
Now we consider the transformed minimization problem TMPL(x).

$$
\text { Minimize } p(g, z):=z
$$

subject to

$$
\underset{(\eta, s) \in \Gamma}{\forall} \eta(g(s)-x(s)) \leqslant \bar{\gamma}(\eta, s) z .
$$

Then (g, z) is a feasible point of $\operatorname{MPL}(x)$ iff $(g+\alpha z \tilde{g}, z)$ is a feasible point of $\operatorname{TMPL}(x)$. This implies that (g, z) is a solution of $\operatorname{MPL}(x)$ iff $(g+\alpha z \tilde{g}, z)$ is a solution of $\operatorname{TMPL}(x)$. To prove the theorem, it suffices to prove that

$$
\left(\bar{g}_{0}, z_{0}\right):=\left(g_{0}+\alpha z_{0} \tilde{g}, z_{0}\right)
$$

is a strongly unique solution of $\operatorname{TMPL}(x)$.
Let (\bar{g}, z) be a feasible point of $\operatorname{TMPL}(x)$, where $\bar{g}=g+\alpha z \tilde{g}$ with $(y, z) \in V_{x}$. Then we have

$$
\begin{aligned}
\left\|\bar{g}-\bar{g}_{0}\right\|_{\infty} & \leqslant\left\|g-g_{0}\right\|_{\infty}+\left(z-z_{0}\right)\|\alpha \tilde{g}\|_{\infty} \\
& \leqslant K\left(z-z_{0}\right)+\left(z-z_{0}\right)\|\alpha \tilde{g}\|_{\infty} \\
& =: K_{0}\left(z-z_{0}\right) .
\end{aligned}
$$

For the linear one-sided cases, i.e., $\gamma(\eta, s)=(1+\eta) / 2(\operatorname{resp} . \gamma(\eta, s)=$ $(1-\eta) / 2$), we have $S^{-}=S$ and $S^{+}=\varnothing$ (resp. $S^{+}=S$ and $S^{-}=\varnothing$). Then we have the following:

Corollary 6.4. Assume there exists a positive function in V. Then $\left(g_{0}, z_{0}\right)$ is a strongly unique solution of $\mathrm{MPL}(x)$ iff condition (a) of Theorem 4.1 is fulfilled.

References

1. B. Brosowskr, Über Tschebyscheffsche Approximation mit verallgemeinerten rationalen Funktionen, Math. Z. 90 (1965), 140-151.
2. B. Brosowski, A refinement of the Kolmogorov-criterion, in "Constructive Function Theory '81," pp. 241-247, Publishing House of the Bulgarian Academy of Sciences, Sofia, 1983.
3. B. Brosowski and C. Guerreiro, On the characterization of a set of optimal points and some applications, in "Approximation and Optimization in Mathematical Physics," (B. Brosowski and E. Martensen, Eds.), pp. 141-174, Verlag Peter Lang, Frankfurt (M) and Bern, 1983.
4. E. W. Cheney, Approximation by generalized rational functions, in "Approximation of Functions," (H. L. Garabedian, Ed.), pp. 101-110, Elsevier, Amsterdam/London/New York, 1965.
5. E. W. Cheney and H. L. Loeb, Generalized rational approximation, J. SIAM Numer. Anal. Ser. B, 1 (1964), 11-25.
6. E. W. Cheney and H. L. Loeb, On the continuity of rational approximation operators, Arch. Rational Mech. Anal. 21 (1966), 391-401.
7. R. Hettich and P. Zencke, "Numerische Methoden der Approximation und semiinfiniten Optimierung," Teubner, Stuttgart, 1982.
8. H. L. Lork, Approximation by generalized rationals, J. S/AM Numer. Anal. 3 (1966), 34-55.
9. H. L. Loeb and D. G. Moursund, Continuity of the best approximation operator for restricted range approximations, J. Approx. Theory 1 (1968), 391-400.
10. G. D. Taylor, Approximation by functions having restricted ranges: Equality case, Numer. Math. 14 (1969), 71-78.

[^0]: * Partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasil.

