An Extension of Strong Uniqueness to Rational Approximation

BRUNO BROSOWSKI*

Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, D-6000 Frankfurt, West Germany

AND

CLAUDIA GUERREIRO*

Instituto de Matemática, Universidade Federal do Rio de Janeiro, 21944 Rio de Janeiro, Brasil

Communicated by V. Totik

Received October 24, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

In this paper the concept of strong uniqueness is extended to non-normal rational minimization problems. A characterization of those problems which have strongly unique solutions is given. To obtain this characterization a refinement of the Kolmogorov criterion is proved. © 1986 Academic Press, Inc.

1. INTRODUCTION

Let S be a compact Hausdorff space, $S \neq \emptyset$, and define the compact Hausdorff space $T := \{-1, 1\} \times S$. Let $B, C: S \to \mathbb{R}^N$ be continuous functions such that the set

$$U := \bigcap_{s \in S} \left\{ v \in \mathbb{R}^N \mid \langle C(s), v \rangle > 0 \right\}$$

is non-empty. Let $\gamma: T \to \mathbb{R}$ be continuous non-negative and for $(v, z) \in U \times \mathbb{R}$ define p(v, z) := z.

* Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil.

For each $x \in C(S)$ consider the minimization problem MPR(x).

Minimize
$$p(v, z)$$

subject to

$$\bigvee_{(\eta,s)\in T} \eta \frac{\langle B(s), v \rangle}{\langle C(s), v \rangle} - \gamma(\eta, s) z \leq \eta x(s).$$

A particular case is given by the following. Let $g_1, g_2, ..., g_l, h_1, h_2, ..., h_m \in C(S)$ be such that

$$\left\{\beta \in \mathbb{R}^m \mid \bigvee_{s \in S} \sum_{i=1}^m \beta_i h_i(s) > 0\right\}$$

is non-empty and define N := l + m,

$$B(s) := (g_1(s), g_2(s), ..., g_l(s), 0, 0, ..., 0),$$

$$C(s) := (0, 0, ..., 0, h_1(s), h_2(s), ..., h_m(s)).$$

As was shown in [3], this particular case contains certain classes of rational Chebyshev approximation problems, f.e. weighted, one-sided and unsymmetric problems.

Define the set

$$V := \left\{ \frac{\langle B, v \rangle}{\langle C, v \rangle} \in C(S) \; \middle| \; v \in U \right\}.$$

A pair $(\langle B, v_0 \rangle / \langle C, v_0 \rangle, z_0) \in V \times \mathbb{R}$ is also called a solution of MPR(x), whenever (v_0, z_0) is a solution of MPR(x). For each $r_0 \in V$ we define the linear subspace

$$H_0 := \left\{ v \in \mathbb{R}^N \; \middle| \; \bigvee_{s \in S} \left\langle r_0(s) \; C(s) - B(s), v \right\rangle = 0 \right\},$$

and for each $v \in \mathbb{R}^N$ let φ_v be the angle between v and H_0 .

For each $x \in C(S)$ we introduce the sets

$$Z_x := \left\{ (v, z) \in U \times \mathbb{R} \; \middle| \; \bigvee_{(\eta, s) \in T} \eta \; \frac{\langle B(s), v \rangle}{\langle C(s), v \rangle} - \gamma(\eta, s) z \leqslant \eta x(s) \right\}$$

and

$$V_x := \left\{ \left(\frac{\langle B, v \rangle}{\langle C, v \rangle}, z \right) \in V \times \mathbb{R} \mid (v, z) \in Z_x \right\}.$$

We denote by L the set

$$\{x \in C(S) \mid MPR(x) \text{ has a solution}\}.$$

A solution (r_0, z_0) of the minimization problem MPR(x) is called strongly unique if and only if there exists a constant $K_1 := K_1(x) > 0$ such that

$$\bigvee_{(v,z) \in Z_x} z - z_0 \geqslant K_1 \varphi_v. \tag{(*)}$$

In this paper we characterize those functions x in L such that MPR(x) has a strongly unique solution (r_0, z_0) . It turns out that the Haar-condition in a certain finite subset of S is always sufficient for strong uniqueness and also necessary provided $\gamma(\eta, s) > 0$ for $(\eta, s) \in T$. We remark that these results are valid without assuming normality of the function x.

In the normal case (compare Section 5) we prove that condition (*) is equivalent to the usual definition of strong unicity, i.e.,

$$\bigvee_{(r,z)\in V_x} z - z_0 \ge K_2 \|r - r_0\|_{\infty} \tag{(**)}$$

where $K_2 := K_2(x) > 0$. It is known that in the non-normal case even with Haar-condition in S the inequality (**) is not valid. Thus definition (*) of strong uniqueness extends the usual one in a natural way.

For rational Chebyshev approximation Cheney and Loeb [5] proved a strong uniqueness result of the type

$$\|x - r\|_{\infty} - \|x - r_0\|_{\infty} \ge K_3 \varphi_v^2$$
(***)

assuming that x is normal and the Haar-condition is satisfied in S. This result was later extended by Brosowski [1] to the non-normal case. In view of Theorem 5.2 and Example 6.2 it is not possible to derive the strong uniqueness result (**) from (***). A direct proof of (**) was given by Cheney [4] assuming the Haar-condition in S. Later Loeb [8] estimated in the non-normal case the difference

$$||x-r||_{\infty} - ||x-r_0||_{\infty}$$

essentially by $K_4 \cdot \varphi_0$ also assuming the Haar-condition in S.

In the proof of the sufficiency part of the strong uniqueness Theorem 4.1 we use a refinement of the Kolmogorov criterion, which in proved in Section 3. This refinement extends a result of Brosowski [2] in the linear case, who also used it to characterize functions with strongly unique best approximations.

Since the Haar-condition in S implies, of course, the Haar-condition in

any finite subset of S, the various results mentioned above follow from our results. Also results of Loeb and Moursund [9] and of Taylor [10] for the case of one-sided rational Chebyshev approximation are included. In Theorems 4.2 and 5.2 we have strong uniqueness results in the parameter space which contain results of Cheney and Loeb [6] and Hettich and Zencke [7].

If condition (*) is satisfied for MPR(x) then we can derive in the case

$$T_c := \{(\eta, s) \in T \mid \gamma(\eta, s) > 0\}$$

compact a continuity result for the angle φ_v , i.e., there exists a constant $K_5 := K_5(x) > 0$ such that

$$\varphi_v \leqslant K_5 \| y - x \|$$

for all y in L, where v defines a solution of MPR(y). If x is a normal point, then we can derive from (**) a continuity result for the metric projection. We remark that in the case of usual Chebyshev approximation and in the case of one-sided approximation the set T_c is always compact.

We introduce some definitions and notations. For each $r_0 \in V$ define the linear space

$$\mathscr{L}(r_0) := \{ \langle r_0 C - B, v \rangle \in C(S) \mid v \in \mathbb{R}^N \}.$$

Choose a basis $\varphi_1, \varphi_2, ..., \varphi_d$ of $\mathscr{L}(r_0)$ and define for each $t = (\eta, s)$ in T the vectors

$$G(t) := G(\eta, s) := \eta(\varphi_1(s), \varphi_2(s), ..., \varphi_d(s)).$$

A subset $M \subset T$ is said to be critical (with respect to r_0 in V) iff

$$0 \in \operatorname{con}(\{G(t) \in \mathbb{R}^d \mid t \in M\}).$$

For each $(r_0, z_0) \in V \times \mathbb{R}$, $z_0 > 0$, define

$$M_0 := \{ (\eta, s) \in T \mid \eta(r_0(s) - x(s)) = \gamma(\eta, s) z_0 \}.$$

A signature on S is a continuous mapping defined on a closed subset of S into $\{-1, 1\}$. In the following we assume that $x \notin V$ and that

$$\bigvee_{s \in S} \gamma(-1, s) + \gamma(1, s) > 0.$$

We define a signature ε_0 by setting $\varepsilon_0(s) = \eta$ for each $(\eta, s) \in M_0$. A signature ε is said to be critical iff

$$\{(\varepsilon(s), s) \in T \mid s \in \text{DOM}(\varepsilon)\}$$

is a critical subset of T. A critical signature is called primitive, if it does not contain properly any other critical signature. We denote by Λ_0 the set of all primitive critical signatures contained in ε_0 .

For each signature ε define the linear space

$$V(\varepsilon) := \left\{ v \in \mathbb{R}^N \mid \bigvee_{s \in \text{DOM}(\varepsilon)} \langle r_0(s) \ C(s) - B(s), v \rangle = 0 \right\},\$$

and for each $v \in \mathbb{R}^N$ let $\varphi_v(\varepsilon)$ denote the angle between v and $V(\varepsilon)$. Further define

$$\Gamma_0 := \{ (\varepsilon(s), s) \in M_0 \mid \varepsilon \in A_0 \}$$

and

$$S_0 := \{ s \in S \mid (\varepsilon_0(s), s) \in \Gamma_0 \}.$$

Using Theorem 1.3 and Lemma 4.2 of [3] we have

THEOREM 1.1. If (r_0, z_0) is a solution of MPR(x), then ε_0 is a critical signature.

This theorem implies that the sets Λ_0 , Γ_0 , and S_0 are non-empty provided (r_0, z_0) is a solution of MPR(x). In this case we denote the restriction of ε_0 to S_0 by $\tilde{\varepsilon}_0$.

2. A Lemma

LEMMA 2.1. Let A be a non-empty bounded subset of \mathbb{R}^N such that

$$\bigvee_{v \in H \setminus \{0\}} \inf_{w \in A} \langle v, w \rangle < 0,$$

where $H := \operatorname{span}(A)$.

Then there exists a constant K > 0 such that

$$\bigvee_{v \in \mathbb{R}^N} \inf_{w \in A} \langle v, w \rangle \leqslant -K \|v\| \psi_v,$$

where ψ_v denotes the angle between v and H^{\perp} .

Proof. By hypothesis, we have

$$\bigvee_{\substack{v \in H \\ \|v\| = 1}} \Psi(v) := \inf_{w \in A} \langle v, w \rangle < 0.$$

Hence there exists $\alpha > 0$ such that

$$\Psi(v) \leqslant -\alpha$$

for each $v \in H$ with ||v|| = 1. If not there exists a sequence (v_n) contained in H such that $||v_n|| = 1$, $\Psi(v_n) \to 0$, and $v_n \to v_0$. Since $\Psi(v_0) < 0$ there exists $w_0 \in A$ such that $\langle v_0, w_0 \rangle < 0$. Consequently,

$$\langle v_0, w_0 \rangle < \Psi(v_n) \leq \langle v_n, w_0 \rangle$$

for *n* large enough. For $n \to \infty$ we obtain

$$\langle v_0, w_0 \rangle < 0 \leq \langle v_0, w_0 \rangle,$$

which is a contradiction. By homogeneity, we have

$$\bigvee_{v \in H} \inf_{w \in A} \langle v, w \rangle \leq -\alpha ||v||.$$

Now consider $v \in \mathbb{R}^N$ and let P(v) be its orthogonal projection onto H^{\perp} . Then $v - P(v) \in H$. Thus

$$\inf \langle v, w \rangle = \inf \langle v - Pv, w \rangle$$
$$\leqslant -\alpha \|v - Pv\|$$
$$= -\alpha \|v\| \sin \psi_v$$
$$\leqslant -K \|v\| \psi_v,$$

with a suitable real number K > 0.

COROLLARY 2.2. Let A be a non-empty bounded subset of \mathbb{R}^N such that $0 \in \operatorname{con}(A)$ and $0 \notin \operatorname{con}(\widetilde{A})$ for each $\widetilde{A} \subsetneq A$.

Then there exists a constant K > 0 such that

$$\bigvee_{v \in \mathbb{R}^N} \inf_{w \in A} \langle v, w \rangle \leq -K \|v\| \psi_v,$$

where ψ_v denotes the angle between v and $H^{\perp} := (\operatorname{span} A)^{\perp}$.

Proof. The assumptions of the corollary imply that A is a finite set, say

$$A = \{w^1, w^2, ..., w^k\}$$

Since $0 \notin \operatorname{con}(\tilde{A})$ for each $\tilde{A} \subsetneq A$, there exist $\rho_1, \rho_2, ..., \rho_k > 0$ such that

$$\rho_1 + \rho_2 + \cdots + \rho_k = 1$$

and

$$\rho_1 w^1 + \rho_2 w^2 + \dots + \rho_k w^k = 0$$

Choose $v \in H \setminus \{0\}$. Then the last equation implies

$$\rho_1 \langle v, w^1 \rangle + \rho_2 \langle v, w^2 \rangle + \dots + \rho_k \langle v, w^k \rangle = 0.$$

Since $v \in H$ and $\rho_i > 0$, at least one product $\langle v, w^j \rangle$ is different from zero. Consequently

$$\bigvee_{v \in H \setminus \{0\}} \inf_{w \in A} \langle v, w \rangle < 0.$$

Now apply Lemma 2.1.

COROLLARY 2.3. Let A be a non-empty bounded subset of \mathbb{R}^N and $(A_{\lambda})_{\lambda \in A}$ be a family of subsets of A such that $A = \bigcup A_{\lambda}$ and for each $\lambda \in A$

$$0 \in \operatorname{con}(A_{\lambda}) \& 0 \notin \operatorname{con}(\widetilde{A}_{\lambda}) \qquad if \quad \widetilde{A}_{\lambda} \subsetneq A_{\lambda}.$$

Then there exists a constant K > 0 such that

- (a) $\forall_{v \in \mathbb{R}^N} \inf_{w \in \mathcal{A}} \langle v, w \rangle \leq -K \|v\| \psi_v$,
- (b) $\forall_{v \in \mathbb{R}^N} \inf_{w \in A} \langle v, w \rangle \leq -K \|v\| \sup_{\lambda \in A} \psi_v^{\lambda}$

where ψ_v^{λ} denotes the angle between v and $H_{\lambda}^{\perp} := (\operatorname{span} A_{\lambda})^{\perp}$.

Proof. By Corollary 2.2, there exists for each $\lambda \in A$ a constant $K_{\lambda} > 0$ such that

$$\bigvee_{v \in \mathbb{R}^{N}} \inf_{w \in A} \langle v, w \rangle \leq \inf_{w \in A_{\lambda}} \langle v, w \rangle \leq -K_{\lambda} \|v\| \psi_{v}^{\lambda}$$

Consider $v \in H := \operatorname{span}(A)$, $v \neq 0$. Since $v \notin H^{\perp}$ and $H^{\perp} = \bigcap_{\lambda \in A} H^{\perp}_{\lambda}$ there exists $\lambda \in A$ such that $v \in H^{\perp}_{\lambda}$. Hence $\psi^{\lambda}_{v} > 0$. Consequently, we have

$$\bigvee_{\substack{v \in H \\ v \neq 0}} \inf_{\substack{w \in A}} \langle v, w \rangle < 0.$$

Applying Lemma 2.1, we obtain (a).

Since $H^{\perp} \subset H_{\lambda}^{\perp}$, we have $\psi_{v}^{\lambda} \leq \psi_{v}$ for each $\lambda \in \Lambda$, and (b) follows immediately.

3. Refined Kolmogorov Criteria

In the following we use the abbreviation

$$w := r_0 C - B,$$

where r_0 is a fixed element of V.

LEMMA 3.1. Let ε be a primitive critical signature for $r_0 \in V$. Then

$$0 \in \operatorname{con} \{ \varepsilon(s) \ w(s) \in \mathbb{R}^N \mid s \in \operatorname{DOM}(\varepsilon) \}$$

and

$$0 \notin \operatorname{con} \{ \varepsilon(s) \ w(s) \in \mathbb{R}^N \mid s \in F \}$$

for each $F \subsetneq \text{DOM}(\varepsilon)$.

Proof. Let $DOM(\varepsilon) =: \{s_1, s_2, ..., s_k\}$. Then there exist real numbers $\alpha_1, \alpha_2, ..., \alpha_k > 0$ such that

$$\sum_{i=1}^{k} \alpha_i \varepsilon(s_i) \, \varphi_j(s_i) = 0,$$

j=1, 2, ..., d. Since each coordinate of w is an element of $\mathscr{L}(r_0)$, we have also

$$\sum_{i=1}^k \alpha_i \varepsilon(s_i) w(s_i) = 0,$$

which implies

$$0 \in \operatorname{con} \{ \varepsilon(s) \ w(s) \in \mathbb{R}^N \mid s \in \operatorname{DOM}(\varepsilon) \}.$$

Suppose there exists a subset $F \subseteq DOM(\varepsilon)$ (we can assume $F = \{s_1, s_2, ..., s_n\}, n < k$) and real numbers $\rho_1, \rho_2, ..., \rho_n > 0$ such that

$$\sum_{i=1}^{n} \rho_i \varepsilon(s_i) w(s_i) = 0.$$

Since

$$\mathscr{L}(r_0) = \{ \langle w, v \rangle \in C(S) \mid v \in \mathbb{R}^N \},\$$

we have

$$\sum_{i=1}^{n} \rho_i \varepsilon(s_i) h(s_i) = 0$$

for each $h \in \mathcal{L}(r_0)$. In particular, we have

$$\sum_{i=1}^{n} \rho_i \varepsilon(s_i) \, \varphi_j(s_i) = 0,$$

j = 1, 2, ..., d or

$$\sum_{i=1}^{n} \rho_i G(\varepsilon(s_i), s_i) = 0,$$

i.e., the restriction of ε to the set F is critical.

THEOREM 3.2 (Local Kolmogorov criterion). Let (r_0, z_0) be a solution of MPR(x). Then there exists a constant K > 0 such that

(a)
$$\bigvee_{v \in \mathbb{R}^N} \min_{s \in \text{DOM}(e_0)} \varepsilon_0(s) \langle r_0(s) C(s) - B(s), v \rangle \leq -K \|v\| \varphi_v(\tilde{\varepsilon}_0);$$

(b)
$$\bigvee_{v \in \mathbb{R}^N} \min_{s \in \text{DOM}(\varepsilon_0)} \varepsilon_0(s) \langle r_0(s) C(s) - B(s), v \rangle \leq -K \|v\| \sup_{\varepsilon \in A_0} \varphi_v(\varepsilon).$$

Proof. The non-empty set

$$A := \{\varepsilon_0(s) \ w(s) \in \mathbb{R}^N \mid s \in S_0\}$$

is bounded, since it is contained in the compact set

$$\{\varepsilon_0(s) | w(s) \in \mathbb{R}^N \mid s \in \text{DOM}(\varepsilon_0)\}.$$

By definition of S_0 we have

$$A=\bigcup_{\varepsilon\in A_0}A_{\varepsilon},$$

where

$$A_{\varepsilon} := \{ \varepsilon_0(s) \ w(s) \in \mathbb{R}^N \mid s \in \text{DOM}(\varepsilon) \}.$$

By Lemma 3.1 and by Corollary 2.3 there exists a constant K > 0 such that

(a)
$$\begin{array}{l} \forall \min_{v \in \mathbb{R}^{N}} \sup_{s \in \text{DOM}(\varepsilon_{0})} \varepsilon_{0}(s) \langle r_{0}(s) \ C(s) - B(s), v \rangle \\ \leqslant \inf_{s \in \text{DOM}(\varepsilon_{0})} \varepsilon_{0}(s) \langle w(s), v \rangle \leqslant -K \|v\| \ \varphi_{v}(\widetilde{\varepsilon}_{0}); \\ \end{array}$$
(b)
$$\begin{array}{l} \forall \min_{v \in \mathbb{R}^{N}} \sup_{s \in \text{DOM}(\varepsilon_{0})} \varepsilon_{0}(s) \langle r_{0}(s) \ C(s) - B(s), v \rangle \\ \leqslant \inf_{s \in \text{DOM}(\widetilde{\varepsilon}_{0})} \varepsilon_{0}(s) \langle w(s), v \rangle \leqslant -K \|v\| \sup_{\varepsilon \in A_{0}} \varphi_{v}(\varepsilon). \end{array}$$

THEOREM 3.3 (Global Kolmogorov criterion). Let (r_0, z_0) be a solution of MPR(x). Then there exists a constant $K_1 > 0$ such that

(a)
$$\forall \min_{r \in V} \sup_{s \in \text{DOM}(v_0)} \varepsilon_0(s)(r_0(s) - r(s)) \leq -K_1 \varphi_v(\tilde{\varepsilon}_0);$$

(b)
$$\forall \min_{r \in V} \sup_{s \in \text{DOM}(\varepsilon_0)} \varepsilon_0(s)(r_0(s) - r(s) \leq -K_1 \sup_{\varepsilon \in A_0} \varphi_v(\varepsilon))$$

where $v \in U$ is such that $r = \langle B, v \rangle / \langle C, v \rangle$.

Proof. Let $\tilde{s} \in DOM(\varepsilon_0)$ be such that

$$\varepsilon_0(\tilde{s})\langle w(\tilde{s}), v \rangle = \min_{s \in \text{DOM}(\varepsilon_0)} \varepsilon_0(s) \langle r_0(s) C(s) - B(s), v \rangle.$$

Then, by using Theorem 3.2 we have

$$\min_{s \in \text{DOM}(\varepsilon_0)} \varepsilon_0(s)(r_0(s) - r(s))$$

$$= \min \frac{\varepsilon_0(s) \langle r_0(s) C(s) - B(s), v \rangle}{\langle C(s), v \rangle}$$

$$\leq \frac{\varepsilon_0(\tilde{s}) \langle r_0(\tilde{s}) C(\tilde{s}) - B(\tilde{s}), v \rangle}{\langle C(\tilde{s}), v \rangle}$$

$$\leq -\frac{K \|v\| \varphi_v(\tilde{\varepsilon}_0)}{\|C\|_{\infty} \|v\|} =: -K_1 \varphi_v(\tilde{\varepsilon}_0),$$

which proves (a).

Since $V(\tilde{\varepsilon}_0) \subset V(\varepsilon)$ for each $\varepsilon \in \Lambda_0$, we have $\varphi_v(\tilde{\varepsilon}_0) \ge \varphi_v(\varepsilon)$, which implies (b).

Remark. Instead of estimating $\langle C(s), v \rangle$ by $||C||_{\infty} \cdot ||v||$ we could have used the sharper estimate $\langle C(s), v \rangle \leq ||C||_{\infty} \cdot ||\bar{v}||$, where $\bar{v} \in \mathbb{R}^N$ is defined by

$$\bar{v}_i := v_i \quad \text{if} \quad C_i \neq 0$$
 $:= 0 \quad \text{if} \quad C_i = 0,$

i = 1, 2, ..., N. This would imply also the sharper estimate

$$\bigvee_{(v,z) \in Z_z} z \ge z_0 + \frac{K \|v\|}{\|\bar{v}\|} \varphi_t$$

in the sufficiency part of Theorem 4.1.

In the case of linear problems the refined Kolmogorov criterion can be stated in a more simplified way. Consider the particuar situation

$$B(s) := (g_1(s), g_2(s), ..., g_l(s), 0),$$

$$C(s) := (0, 0, ..., 0, 1),$$

where $g_1, g_2, ..., g_l$ are linearly independent functions of C(S). Then for each $x \in C(S)$ we have the linear problem MPL(x).

Minimize p(v, v) := zSubject to

$$\bigvee_{(\eta,s)\in T} \eta\left(\frac{\sum_{i=1}^{l} v_i g_i(s)}{v_{l+1}} - x(s)\right) \leq \gamma(\eta, s)z.$$

For any signature ε we introduce the linear subspaces

$$V_L(\varepsilon) := \left\{ b \in \mathbb{R}^l \; \middle| \; \bigvee_{s \in \text{DOM}(\varepsilon)} \sum_{i=1}^l b_i g_i(s) = 0 \right\}$$

and

$$V_R(\varepsilon) := \bigg\{ v \in \mathbb{R}^{l+1} \bigg| \bigvee_{s \in \text{DOM}(\varepsilon)} \langle B(s), v \rangle = 0 \bigg\}.$$

Let $I: \mathbb{R}^{l} \to \mathbb{R}^{l+1}$ be the injection defined by

$$\bigvee_{b \in \mathbb{R}^l} I(b) := (b, 0).$$

Then we have

$$V_{R}(\varepsilon) = I(V_{L}(\varepsilon)) \oplus \mathbb{R}e_{l+1}.$$
(*)

Let $P_R: \mathbb{R}^{l+1} \to V_R(\varepsilon)$ and $P_L: \mathbb{R}^l \to V_L(\varepsilon)$ be the projections associated with the spaces $V_R(\varepsilon)$ and $V_L(\varepsilon)$, respectively. Then we have

$$P_R \circ I = I \circ P_L.$$

To prove this relation choose an element $b \in \mathbb{R}^{l}$. Then we have

$$\forall \langle b - P_L b, u \rangle = 0,$$

which is equivalent to

$$\bigvee_{v \in I(V_L(\varepsilon))} \langle I(b) - I \circ P_L(b), v \rangle = 0.$$

By (*) we also have

$$\bigvee_{v \in V_R(\varepsilon)} \langle I(b) - I \circ P_L(b), v \rangle = 0.$$

Hence $I \circ P_L(b)$ is the projection of I(b) onto $V_R(\varepsilon)$, i.e., $P_R \circ I = I \circ P_L$.

THEOREM 3.4. (Refined linear Kolmogorov criterion). Let (g_0, z_0) be a solution of MPL(x). Then there exists a real number $K_2 > 0$ such that

(a)
$$\begin{array}{l} \forall \min_{g \in V} \min_{s \in \text{DOM}(e_0)} \varepsilon_0(s) \ g(s) \leqslant -K_2 \ \| \ g \|_{\infty} \cdot \theta_g(\tilde{\varepsilon}_0) \\ \text{(b)} \quad \bigvee_{g \in V} \min_{s \in \text{DOM}(e_0)} \varepsilon_0(s) \ g(s) \leqslant -K_2 \ \| \ g \|_{\infty} \cdot \sup_{\varepsilon \in A_0} \theta_g(\varepsilon), \end{array}$$

where $\theta_g(\varepsilon)$ denotes the angle between $V_L(\varepsilon)$ and b, $g = \sum_{i=1}^l b_i g_i$.

Proof. We can assume $g_0 = 0$. Let $g = \sum_{i=1}^{l} b_i g_i$ be given. By using Theorem 3.2 with $v = I(b) + e_{l+1}$ we have for a suitable $K_3 > 0$

$$\min_{s \in \text{DOM}(\varepsilon_0)} \varepsilon_0(s) g(s) \leq -K_3 \|I(b) + e_{l+1}\| \sin \varphi_v(\tilde{\varepsilon}_0) = -K_3 \|I(b) + e_{l+1} - P_R(I(b) + e_{l+1})\| = -K_3 \|I(b) - P_R \circ I(b)\| = -K_3 \|I(b) - I \circ P_L(b)\| = -K_3 \|b - P_L(b)\| = -K_3 \|b\| \sin \theta_g(\tilde{\varepsilon}_0) \leq -K_2 \|g\|_{\infty} \theta_g(\tilde{\varepsilon}_0),$$

which proves (a).

Statement (b) follows from (a) by using the fact $\theta_g(\tilde{\varepsilon}_0) \ge \theta_g(\varepsilon)$ for each $\varepsilon \in \Lambda_0$.

4. A NECESSARY AND SUFFICIENT CONDITION FOR STRONG UNIQUENESS

For each $r_0 = \langle B, v_0 \rangle / \langle C, v_0 \rangle$ in V the linear subspace

$$H_0 := \left\{ y \in \mathbb{R}^N \mid \bigvee_{s \in S} \langle r_0(s) \ C(s) - B(s), \ y \rangle = 0 \right\}$$

has dimension N-d. In fact, define the linear mapping $F: \mathbb{R}^N \to C(S)$ by setting

$$\bigvee_{v \in \mathbb{R}^N} F(v) := \langle r_0 C - B, v \rangle.$$

THEOREM 4.1. Let (r_0, z_0) be a solution of MPR(x). Consider the following conditions:

(a) There exist points $s_i \in S_0$, i = 1, 2, ..., d, such that the vectors

$$r_0(s_i) C(s_i) - B(s_i) \in \mathbb{R}^N$$

i = 1, 2, ..., d, are linearly independent.

(b) There exists a constant K := K(x) > 0 such that

$$\bigvee_{(v,z) \in Z_x} z \ge z_0 + K \varphi_v.$$

Then (a) \Rightarrow (b). Moreover, if $\gamma(\eta, s) > 0$ for all $(\eta, s) \in T$ then we also have (b) \Rightarrow (a).

Proof. (a) \Rightarrow (b). We show that $H_0 = V(\tilde{\varepsilon}_0)$. The inclusion $H_0 \subset V(\tilde{\varepsilon}_0)$ is clear. On the other hand there exist signatures ε_1 , ε_2 ,..., ε_k in Λ_0 such that

$$\{s_1, s_2, ..., s_d\} \subset \bigcup_{i=1}^k \text{DOM}(\varepsilon_i).$$

The linear subspace

$$H^{\#} := \{ v \in \mathbb{R}^{N} \mid \langle r_{0}(s_{i}) C(s_{i}) - B(s_{i}), v \rangle = 0, i = 1, 2, ..., d \}$$

has dimension N-d and contains $V(\tilde{\varepsilon}_0)$. Thus we have

$$H_0 \subset V(\tilde{\varepsilon}_0) \subset H^{\#}.$$

Since dim $H_0 = N - d$, we have

$$H_0 = V(\tilde{\varepsilon}_0) = H^{\#}.$$

Consequently we have $\varphi_v = \varphi_v(\tilde{\varepsilon}_0)$ for each $v \in \mathbb{R}^N$.

Let (v, z) be in Z_x and let $r = \langle B, v \rangle / \langle C, v \rangle$. By theorem 3.3(a) there exist $K_1 > 0$ and a pair $(\varepsilon_0(s), s) \in M_0$ such that

$$\varepsilon_0(s)(r_0(s)-r(s)) \leq -K_1\varphi_v(\tilde{\varepsilon}_0).$$

Then we have

$$\begin{aligned} \|\gamma\|_{\infty}(z-z_0) &\ge \gamma(\varepsilon_0(s), s)(z-z_0) \\ &\ge \varepsilon_0(s)(r(s)-x(s)) - \varepsilon_0(s)(r_0-x(s)) \\ &= -\varepsilon_0(s)(r_0(s)-r(s)) \\ &\ge K_1 \varphi_v(\tilde{\varepsilon}_0), \end{aligned}$$

which implies

 $z - z_0 \ge K \varphi_v$

where $K := K_1 / \|\gamma\|_{\infty}$.

 $(b) \Rightarrow (a)$. Consider

$$S_1 := \operatorname{span} \{ r_0(s) \ C(s) - B(s) \in \mathbb{R}^N \mid s \in S_0 \},\$$

let $d_1 := \dim S_1$ and assume by contradiction $d_1 < d$. Since dim $S_1^{\perp} = N - d_1$, dim $H_0^{\perp} = d$, and $d - d_1 > 0$, we have

$$\dim(S_1^{\perp} \cap H_0^{\perp}) \ge 1.$$

Now we claim that we can choose $v \in S_1^{\perp} \cap H_0^{\perp}$, $v \neq 0$, such that

$$\bigvee_{\substack{(\varepsilon_0(s),s)\in M_0\setminus\Gamma_0}}\varepsilon_0(s)\langle B(s)-r_0(s) C(s), v\rangle \leq 0.$$

If not, there exists for each $v \in S_1^{\perp} \cap H_0^{\perp}$, $v \neq 0$, a point $(\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0$ such that

 $\varepsilon_0(s)\langle y(s), v \rangle > 0,$

where we have used the abbreviation

$$y(s) := B(s) - r_0(s) C(s).$$

Consequently, the convex hull of the linear functionals

$$x_s^*: v \mapsto \varepsilon_0(s) \langle y(s), v \rangle,$$

 $(\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0$, defined on $H_0^{\perp} \cap S_1^{\perp}$ has a non-empty interior. If not, there exists $x^* \in (H_0^{\perp} \cap S_1^{\perp})^*$ orthogonal to x_s^* for all $(\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0$. So, for some $v \in H_0^{\perp} \cap S_0^{\perp}$ we would have

$$\begin{array}{l} \bigvee \\ (\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0 \\ = \varepsilon_0(s) \langle y(s), v \rangle, \end{array}$$

which is impossible. Further we claim

$$0 \in \operatorname{con} \{ x_s^* \in (H_0^{\perp} \cap S_1^{\perp})^* \mid (\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0 \}.$$

If not, there exists an element $v \in (S_1^{\perp} \cap H_0^{\perp}) \setminus \{0\}$ such that for all elements

$$a \in \operatorname{con} \left\{ x_s^* \in (S_1^{\perp} \cap H_0^{\perp})^* \mid (\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0 \right\}$$

we have $\langle a, v \rangle \leq 0$, which implies

$$\varepsilon_0(s)\langle y(s), v\rangle \leq 0$$

for all $(\varepsilon_0(s), s) \in M_0 \setminus \Gamma_0$.

Consequently, there exist real numbers

$$\tau_1, \tau_2, ..., \tau_k > 0$$

and points

$$(\varepsilon_0(s_1), s_1), (\varepsilon_0(s_2), s_2), ..., (\varepsilon_0(s_k), s_k) \in M_0 \setminus \Gamma_0$$

such that $\tau_1 + \tau_2 + \cdots + \tau_k = 1$ and

$$\bigvee_{v \in S_1^{\perp} \cap H_0^{\perp}} \left\langle \sum_{i=1}^k \tau_i \varepsilon_0(s_i) y(s_i), v \right\rangle = 0.$$

By assumption, there exist d_1 points p_1 , p_2 ,..., p_{d_1} in S_0 such that the set of vectors

$$\{y(p_1), y(p_2), ..., y(p_{d_1})\}$$

is linearly independent. Choose a finite number signatures

$$\varepsilon_1, \varepsilon_2, ..., \varepsilon_n \in \Lambda_0$$

such that

$$\{p_1, p_2, \dots, p_{d_1}\} \subset \bigcup_{i=1}^n \text{DOM}(\varepsilon_i).$$

Denote the points in $\bigcup \text{DOM}(\varepsilon_i)$ by $p_1, p_2, ..., p_m$. Then there exist real numbers $\rho_1, \rho_2, ..., \rho_m > 0$ such that

$$\sum_{i=1}^m \rho_i G(\varepsilon_0(p_i), p_i) = 0,$$

which implies

$$z := \sum_{i=1}^{m} \rho_i \varepsilon_0(p_i) \ y(p_i) = 0.$$

Choose a basis $v_1, v_2, ..., v_{d_1}$ of S_1 . Then the matrix

$$(\varepsilon_0(p_i)\langle y(p_i), v_j\rangle)_{\substack{j=1,2,\dots,d_1\\i=1,2,\dots,m}}$$

has rank d_1 , and consequently the linear system

$$\sum_{i=1}^{m} \lambda_i \varepsilon_0(p_i) \langle y(p_i), v_j \rangle = - \left\langle \sum_{i=1}^{k} \tau_i \varepsilon_0(s_i) y(s_i), v_j \right\rangle,$$

 $j=1, 2, ..., d_1$, has a solution

$$(\lambda_1, \lambda_2, ..., \lambda_m) = \mathbb{R}^m.$$

With the aid of this solution define the element

$$\tilde{y} := \sum_{i=1}^{m} \lambda_i \varepsilon_0(p_i) y(p_i) + \sum_{i=1}^{k} \tau_i \varepsilon_0(s_i) y(s_i).$$

Each element $v \in \mathbb{R}^N$ can be represented as $v = w_0 + w_1 + w_2$, where $w_0 \in H_0$, $w_1 \in H_0^{\perp} \cap S_1$, and $w_2 \in H_0^{\perp} \cap S_1^{\perp}$. Using this representation, an easy calculation shows

$$\bigvee_{v \in \mathbb{R}^N} \langle \tilde{y}, v \rangle = 0.$$

We can find $\tau \in \mathbb{R}$ such that all coefficients

$$\tilde{\rho}_i := \lambda_i + \tau \rho_i,$$

i = 1, 2,..., m, are positive and at least one is zero. Without loss of generality we can assume $\tilde{\rho}_i > 0$ for $i = 1, 2,..., m_1 < m$ and $\tilde{\rho}_i = 0$ for $i = m_1 + 1, m_1 + 2,..., m$. Thus we have

$$\tilde{y} + \tau z = \sum_{i=1}^{m_1} \tilde{\rho}_i \varepsilon_0(p_i) y(p_i) + \sum_{i=1}^k \tau_i \varepsilon_0(s_i) y(s_i).$$

Of course, we also have

$$\bigvee_{v \in \mathbb{R}^N} \left< \tilde{y} + \tau z, v \right> = 0.$$

Now assume ε_0 restricted to the set

$$\{p_1, p_2, ..., p_{m_1}\}$$

is critical. Then there exist real numbers

$$\hat{\rho}_1, \, \hat{\rho}_2, ..., \, \hat{\rho}_{m_1} \ge 0$$

such that $\hat{\rho}_1 + \hat{\rho}_2 + \cdots + \hat{\rho}_{m_1} = 1$ and

$$\tilde{z} := \sum_{i=1}^{m_1} \hat{\rho}_i \varepsilon_0(p_i) y(p_i) = 0.$$

We can find $\tilde{\tau} > 0$ such that all coefficients

$$\bar{\rho}_i := (\tilde{\rho}_i - \tilde{\tau} \hat{\rho}_i),$$

 $i = 1, 2,..., m_1$, are non-negative and at least one is zero. Without loss of generality we can assume $\bar{\rho}_i > 0$ for $i = 1, 2,..., m_2 < m_1$ and $\bar{\rho}_i = 0$ for $i = m_2 + 1, m_2 + 2,..., m_1$. Thus we have

$$\tilde{y} + \tau z - \tilde{\tau} \tilde{z} = \sum_{i=1}^{m_2} \bar{\rho}_i \varepsilon_0(p_i) y(p_i) + \sum_{i=1}^k \tau_i \varepsilon_0(s_i) y(s_i)$$

which satisfies the relation

$$\bigvee_{v \in \mathbb{R}^N} \left\langle \, \tilde{y} + \tau z - \tilde{\tau} \tilde{z}, \, v \, \right\rangle = 0.$$

By repeating this process, if necessary, we can assume that the restriction of ε_0 to the set $\{p_1, p_2, ..., p_{m_2}\}, 0 \le m_2 < m$ is not critical.

The points $p_1, p_2, ..., p_{m_2}, s_1, s_2, ..., s_k$ satisfy the relation

$$\sum_{i=1}^{m_2} \bar{\rho}_i \varepsilon_0(p_i) y(p_i) + \sum_{i=1}^k \tau_i \varepsilon_0(s_i) y(s_i) = 0$$

with $\bar{\rho}_i > 0$ and $\tau_i > 0$. Then we also have

$$\sum_{i=1}^{m_2} \bar{\rho}_i G(\varepsilon_0(p_i), p_i) + \sum_{i=1}^k \tau_i G(\varepsilon_0(s_i), s_i) = 0,$$

i.e., the restriction of ε_0 to the set

$$\{p_1, p_2, ..., p_{m_2}\} \cup \{s_1, s_2, ..., s_k\}$$

is critical. Then there exists $\bar{\varepsilon} \in \Lambda_0$ such that

$$\mathbf{DOM}(\bar{\varepsilon}) \cap \{s_1, s_2, ..., s_k\} \neq \emptyset,$$

which contradicts the definition of Γ_0 .

Thus, our first claim is proved, i.e., there exists $v \in H_0^{\perp} \cap S_1^{\perp}$, $v \neq 0$, such that

$$\bigvee_{(\varepsilon_0(s),s)\in \mathcal{M}_0\setminus\Gamma_0}\varepsilon_0(s)\langle B(s)-r_0(s)|C(s),v\rangle\leqslant 0.$$

Since $v \in S_1^{\perp}$, we also have

$$\bigvee_{(\varepsilon_0(s),s)\in M_0} \varepsilon_0(s) \langle B(s) - r_0(s) C(s), v \rangle \leq 0.$$

Define a sequence of positive real numbers (τ_n) such that $\tau_n < 1$, $\tau_n \rightarrow 0$ for $n \rightarrow \infty$, and

$$v_n := (1 - \tau_n)v_0 + \tau_n v$$

belongs to U. Since $v_0 \in H_0$ and $v \in H_0^{\perp}$, we have

$$\sin \varphi_n = \frac{\|v_n - Pv_n\|}{\|v_n\|}$$
$$= \frac{\tau_n \|v\|}{\|v_n\|}$$
$$= \frac{\tau_n \|v\|}{\|(1 - \tau_n) v_0 + \tau_n v\|}$$
$$\ge K_0 \tau_n,$$

with a suitable constant $K_0 > 0$, $\varphi_n := \varphi_{v_n}$, and where P denotes the projection associated with H_0 .

For each $n \in \mathbb{N}$ we define a real number z_n and a point $(\eta_n, s_n) \in T$ such that

$$z_n = \frac{\eta_n(r_n(s_n) - x(s_n))}{\gamma(\eta_n, s_n)}$$
$$= \sup \left\{ \frac{\eta(r_n(s) - x(s))}{\gamma(\eta, s)} \in \mathbb{R} \ \middle| \ (\eta, s) \in T \right\},$$

where $r_n := \langle B, v_n \rangle / \langle C, v_n \rangle$. (We remark that the existence of such points $(\eta_n, s_n) \in T$ follows from the assumption $\gamma > 0$.)

There is an infinite subset $N_0 \subset \mathbb{N}$ such that either

$$\{(\eta_n, s_n) \in T \mid n \in N_0\}$$

consists of a single point, say $(\bar{\eta}, \bar{s})$, or, by compactness of T,

$$\{(\eta_n, s_n) \in T \mid n \in N_0\}$$

has an accumulation point $(\bar{\eta}, \bar{s})$ in T. By hypothesis, we have with a suitable constant $K_1 > 0$ and for all $n \in N_0$ the inequality

$$0 < KK_1 \tau_n \leq K\varphi_n \leq z_n - z_0$$

$$\leq \frac{\eta_n(r_n(s_n) - x(s_n))}{\gamma(\eta_n, s_n)} - \frac{\eta_n(r_0(s_n) - x(s_n))}{\gamma(\eta_n, s_n)}$$

$$= \frac{\tau_n \eta_n \langle B(s_n) - r_0(s_n) C(s_n), v \rangle}{\gamma(\eta_n, s_n) \langle C(s_n), v_n \rangle}$$

which implies

$$0 < KK_1 \leq \frac{\eta_n \langle B(s_n) - r_0(s_n) C(s_n), v \rangle}{\gamma(\eta_n, s_n) \langle C(s_n), v_n \rangle}.$$

By continuity and since $(\bar{\eta}, \bar{s}) \in M_0$ we have

$$0 < KK_1 \leqslant \frac{\bar{\eta} \langle B(\bar{s}) - r_0(\bar{s}) C(\bar{s}), v \rangle}{\gamma(\bar{\eta}, \bar{s}) \langle C(\bar{s}), v_0 \rangle} \\ \leqslant 0. \quad \blacksquare$$

Following the remark after Theorem 3.3 we introduce the set

$$Z_x^{\#} := \{ (v, z) \in Z_x \mid \|\bar{v}\| = 1 \}.$$

From Theorem 4.1 we can derive the following generalization of a result of Cheney and Loeb [6]:

THEOREM 4.2. Let (r_0, z_0) be a solution of MPR(x). Then condition (b) of Theorem 4.1 is equivalent to the condition

(c) There exists a constant $K_1 := K_1(x) > 0$ such that

$$\bigvee_{(v,z)\in Z_x^{\#}} z \ge z_0 + K_1 \cdot \operatorname{dist}(v, H_0);$$

consequently condition (a) of Theorem 4.1 implies (c), and if $\gamma(\eta, s) > 0$ for all $(\eta, s) \in T$ then we also have (c) \Rightarrow (a).

Proof. $(b) \Rightarrow (c)$. Using the remark after Theorem 3.3 we have the estimate

$$\begin{array}{l} \bigvee \limits_{(v,z) \in Z_x^{\#}} z \geqslant z_0 + K \|v\| \varphi_v \\ \geqslant z_0 + K_1 \|v\| \sin \varphi_v \\ = z_0 + K_1 \|v - Pv\| \\ = z_0 + K_1 \operatorname{dist}(v, H_0) \end{array}$$

 $(c) \Rightarrow (b)$. Choose $(v, z) \in Z_x$. Then we have

$$z \ge z_0 + K_1 \operatorname{dist} \left(\frac{v}{\|\bar{v}\|}, H_0 \right)$$
$$= z_0 + K_1 \cdot \frac{\|v - Pv\|}{\|\bar{v}\|}$$
$$\ge z_0 + K_1 \cdot \frac{\|v - Pv\|}{\|v\|}$$
$$\ge z_0 + K\varphi_v. \quad \blacksquare$$

5. STRONG UNICITY IN THE NORMAL CASE

An element $r_0 \in V$ is said to be normal iff dim $\mathscr{L}(r_0) = N - 1$. A function x in L is also said to be normal iff there exists a solution (r_0, z_0) of MPR(x) such that r_0 is normal. For each $r \in V$ we can find $v \in U$ such that

$$r = \frac{\langle B, v \rangle}{\langle C, v \rangle}$$
 and $\langle C(s_0), v \rangle = 1$

for some s_0 . We denote by Z_x^* the set

$$\{(v, z) \in Z_x \mid \langle C(s_0), v \rangle = 1\}.$$

If r_0 is normal, then dim $H_0 = 1$. This implies that there exists a unique $v_0 \in H_0$ such that

$$r_0 = \frac{\langle B, v_0 \rangle}{\langle C, v_0 \rangle}$$
 and $\langle C(s_0), v_0 \rangle = 1.$

We introduce the linear subspace

$$R_{N-1} := \left\{ w \in \mathbb{R}^N \mid \langle C(s_0), w \rangle = 0 \right\}$$

and we denote by $P: \mathbb{R}^N \to H_0$ the orthogonal projection associated with H_0 .

LEMMA 5.1. Let x be a normal point and let $(v_0, z_0) \in Z_x^*$ be a solution of MPR(x). Suppose there exists a constant K > 0 such that

$$\bigvee_{(v,z)\in Z_x} z-z_0 \ge K \sin \varphi_v.$$

Then there exists a constant $K_1 > 0$ such that

(

$$\bigvee_{v,z)\in Z_{x}^{\star}} z - z_{0} \geq \frac{K_{1} \|v - v_{0}\|}{\|v\|}.$$

Proof. Let $(v, z) \in Z_x^*$. Then $v - v_0$ is in R_{N-1} . Since $H_0 \cap R_{N-1} = \{0\}$, the restriction of P to R_{N-1} has norm $0 < \mu < 1$. Then we have

$$z - z_{0} \ge K \sin \varphi_{v}$$

$$= \frac{K \|v - Pv\|}{\|v\|}$$

$$= \frac{K \|v - v_{0} - P(v - v_{0})\|}{\|v\|}$$

$$\ge \frac{K(1 - \mu) \|v - v_{0}\|}{\|v\|}$$

$$=: \frac{K_{1} \|v - v_{0}\|}{\|v\|}$$

THEOREM 5.2. Let x be a normal point and let (r_0, z_0) be a solution of MPR(x). Then the following statements are equivalent:

(a) There exists a constant $K_a > 0$ such that

$$\bigvee_{(v,z)\in Z_x} z \ge z_0 + K_a \varphi_v.$$

(b) There exists a constant $K_b > 0$ such that

$$\bigvee_{(r,z)\in V_x} z \geq z_0 + K_b \|r - r_0\|_{\infty}.$$

(c) For each $\rho > 0$ there exists a constant $K_{\rho} > 0$ such that

$$\bigvee_{\substack{\{v,z\}\in Z_x^*\\ \|v\|\leqslant\rho}} z \ge z_0 + K_\rho \ \|v - v_0\|.$$

Proof. (a) \Rightarrow (c). By Lemma 5.1 there exists a constant K > 0 such that

$$\bigvee_{(v,z)\in \mathbb{Z}_x^*} z \ge z_0 + \frac{K \|v - v_0\|}{\|v\|},$$

which implies (c).

 $(c) \Rightarrow (b)$. Assume by contradiction:

$$\bigvee_{n \in \mathbb{N}} \exists_{(v_n, z_n) \in Z_x} z_n - z_0 < \frac{1}{n} \|r_n - r_0\|_{\infty},$$

where $r_n = \langle B, v_n \rangle / \langle C, v_n \rangle$. We can assume that $(v_n, z_n) \in Z_x^*$ and $v_n / ||v_n|| \to \bar{v}$.

We claim that $||r_n - r_0||_{\infty}$ is bounded. In fact, since

$$\bigvee_{(\eta,s)\in T} \|\gamma\|_{\infty} z \ge \eta(r(s) - x(s))$$

it follows that

$$z \ge \|r - x\|_{\infty} / \|\gamma\|_{\infty}.$$
^(*)

We have

$$0 < \frac{z_n - z_0}{\|r_n - r_0\|_{\infty}} < \frac{1}{n},$$

which implies

$$0 < \frac{z_n - z_0}{\|x - r_n\|_{\infty} + \|x - r_0\|_{\infty}} < \frac{1}{n},$$

consequently

$$0 < \frac{z_n - z_0}{\|\gamma\|_{\infty} (z_n + z_0)} < \frac{1}{n},$$

which implies that (z_n) is bounded and, by (*), that $||r_n - r_0||_{\infty}$ is also bounded. It follows that $z_n \to z_0$.

We claim that also the sequence $(||v_n||)$ is bounded. If not, then we have

$$\langle C(s_0), \bar{v} \rangle = 0.$$

Choose a $\tau > 0$ such that $v_0 + \tau \overline{v} \in U$ and introduce the abbreviation $w_n := v_n / ||v_n||$. Then we have for each $n \in N$ and $(\eta, s) \in T$:

$$\eta \left(\frac{\langle B(s), v_0 + \tau w_n \rangle}{\langle C(s), v_0 + \tau w_n \rangle} - x(s) \right)$$

$$= \frac{\eta \langle C(s), v_0 \rangle}{\langle C(s), v_0 + \tau w_n \rangle} \left[\frac{\langle B(s), v_0 \rangle}{\langle C(s), v_0 \rangle} - x(s) \right]$$

$$+ \frac{\eta \tau \langle C(s), w_n \rangle}{\langle C(s), v_0 + \tau w_n \rangle} \left[\frac{\langle B(s), w_n \rangle}{\langle C(s), w_n \rangle} - x(s) \right]$$

$$\leqslant \frac{\langle C(s), z_0 v_0 + z_n \tau w_n \rangle}{\langle C(s), v_0 + \tau w_n \rangle} \gamma(\eta, s).$$

For $n \to \infty$ we obtain

$$\eta\left(\frac{\langle B(s), v_0 + \tau \bar{v}\rangle}{\langle C(s), v_0 + \tau \bar{v}\rangle} - x(s)\right) \leqslant z_0 \gamma(\eta, s).$$

Consequently $(v_0 + \tau \overline{v}, z_0)$ is also a solution of MPR(x), which belongs to Z_x^* . From (c) we conclude

$$v_0 + \tau \bar{v} = v_0,$$

which leads to $\bar{v} = 0$, contradicting $\|\bar{v}\| = 1$. Consequently, the sequence $(\|v_n\|)$ is bounded.

By hypothesis there exists a suitable constant K > 0 such that

$$\bigvee_{n \in \mathbb{N}} \frac{1}{n} \|r_n - r_0\|_{\infty} > z_n - z_0 \ge K \|v_n - v_0\|,$$

which implies $v_n \rightarrow v_0$. Thus, there exists an $\rho > 0$ and an $n_0 \in \mathbb{N}$ such that

$$\bigvee_{n \ge n_0} \bigvee_{s \in S} \langle C(s), v_n \rangle \ge \rho > 0.$$

So we have

$$\begin{aligned} \|r_n - r_0\|_{\infty} &\leq \frac{\|\langle B - r_0 C, v_n - v_0 \rangle\|_{\infty}}{\rho} \\ &\leq \frac{\|B - r_0 C\|_{\infty}}{\rho} \|v_n - v_0\| \\ &\leq \frac{\|B - r_0 C\|_{\infty}}{\rho \cdot K \cdot \eta} \|r_n - r_0\|_{\infty}, \end{aligned}$$

which implies

$$1 \leqslant \frac{1}{n} \cdot \frac{\|B - r_0 C\|_{\infty}}{\rho K}$$

For $n \to \infty$ we obtain $1 \le 0$, which is impossible. (b) \Rightarrow (a). Since for all $w \in R_{N-1} \setminus \{0\}$ we have

$$\|\langle B-r_0C,w\rangle\|_{\infty}>0,$$

there exists an $\alpha > 0$ such that

$$\bigvee_{w \in R_{N-1}} \|\langle B - r_0 C, w \rangle\|_{\infty} \ge \alpha \|w\|.$$

Let $(v, z) \in Z_x$ and $r := \langle B, v \rangle / \langle C, v \rangle$. Then we have

$$\begin{split} \|r - r_0\|_{\infty} &\ge \frac{\|\langle B - r_0 C, v - v_0 \rangle\|_{\infty}}{\|C\|_{\infty} \cdot \|v\|} \\ &\ge \frac{\alpha \|v - v_0\|}{\|C\|_{\infty} \|v\|} \\ &= \frac{\alpha}{2 \|C\|_{\infty}} \cdot \frac{\|v - v_0\| + \|v - v_0\|}{\|v\|} \\ &\ge \frac{\alpha}{2 \|C\|_{\infty}} \cdot \frac{\|v - v_0 - P(v - v_0)\|}{\|v\|} \\ &\ge \frac{\alpha}{2 \|C\|_{\infty}} \cdot \frac{\|v - Pv\|}{\|v\|} \\ &= \frac{\alpha}{2 \|C\|_{\infty}} \sin \varphi_v \ge K\varphi_v, \end{split}$$

where K > 0 is a suitable constant. The last inequality and (b) imply

 $z \geq z_0 + K_b \|r - r_0\|_{\infty} \geq z_0 + K_a \varphi_v,$

where $K_a := K \cdot K_b$.

THEOREM 5.3. Let x be a normal point and let (r_0, z_0) be a solution of MPR(x). Consider the following conditions:

(a) There exist points $s_i \in S_0$, i = 1, 2, ..., N-1, such that the vectors

$$r_0(s_i) C(s_i) - B(s_i) \in \mathbb{R}^N$$
,

i = 1, 2, ..., N-1, are linearly independent.

(b) There exists a constant K := K(x) > 0 such that

$$\bigvee_{(r,z)\in V_x} z \ge z + K \|r - r_0\|_{\infty}.$$

Then (a) \Rightarrow (b). Moreover, if $\gamma(\eta, s) > 0$ for all $(\eta, s) \in T$ then we also have (b) \Rightarrow (a).

Proof. The theorem follows from Theorems 4.1 and 5.2.

It is clear that we have a similar result for the local strong uniqueness in the parameter space using condition (c) of Theorem 5.2.

In the linear case (compare Section 3) we have $\mathscr{L}(r) = V$ for all $r \in V$. So the condition (a) of Theorem 5.3 reads:

There exist points $s_i \in S_0$, $i = 1, 2, ..., l := \dim V$ such that the vectors

$$(g_1(s_i), g_2(s_2), ..., g_l(s_i)) \in \mathbb{R}^l$$

i = 1, 2, ..., l are linearly independent.

6. Some Remarks

In Theorems 3.2 and 3.3 the signature $\tilde{\varepsilon}_0$ cannot be replaced by ε_0 as the following example shows.

EXAMPLE 6.1. Let S = [-1, 1], $\gamma(\eta, s) = 1$, and V := span(g), where g(s) = s for $s \in S$. Define a function $x \in C(S)$ by

$$x(s) := 1$$
 if $0 < s \le 1$
 $:= 1 - s^2$ if $-1 \le s \le 0$.

Then the function $g_0(s) = 0$ defines a solution of the minimization problem MPR(x). We have

$$M_0 = \{(-1, s) \in T \mid s \in [0, 1]\};$$

$$\Gamma_0 = \{(-1, 0)\},$$

$$H_0 = V(\varepsilon_0) = \{(0, v_2) \in \mathbb{R}^2 \mid v_2 \in \mathbb{R}\};$$

and $V(\tilde{\varepsilon}_0) = \mathbb{R}^2$.

If the statement (a) of Theorem 3.3 would be true for ε_0 instead of $\tilde{\varepsilon}_0$, then for r(s) = s we would have

$$0 = \min_{s \in [0,1]} s = \min_{s \in [0,1]} -1(0-s)$$
$$\leqslant -K_1 \varphi_v(\varepsilon_0) < 0.$$

This example also shows that " ϕ^2 -strong uniqueness" does not imply strong uniqueness. With the abbreviation $\alpha := v_1/v_2$ we have

$$\|x - \alpha g\|_{\infty} - \|x\|_{\infty} = \frac{\alpha^2}{4} \quad \text{if} \quad \alpha \in [0, 2]$$
$$= \alpha - 1 \quad \text{if} \quad \alpha \ge 2$$
$$= -\alpha \quad \text{if} \quad \alpha \le 0.$$

Since we have

$$\sin \varphi_v = \sqrt{\frac{\alpha^2}{1+\alpha^2}},$$

we can find a constant K > 0 such that

$$\left\| x - \frac{v_1}{v_2} g \right\|_{\infty} \ge K \varphi_v^2,$$

hence $g_0 = 0$ is a " φ^2 -strongly unique" solution of MPR(x).

But there does not exist a constant $K_0 > 0$ such that

$$\left\| x - \frac{v_1}{v_2} g \right\|_{\infty} - \left\| x \right\|_{\infty} \ge K_0 \varphi_v.$$

Otherwise we would have

$$\|x-\alpha g\|_{\infty}-\|x\|_{\infty}=\frac{\alpha^{2}}{4} \ge K \sin \varphi = \frac{K|\alpha|}{\sqrt{1+\alpha^{2}}},$$

for all $\alpha \in [0, 2]$. This implies

$$\frac{\sqrt{1+\alpha^2}\cdot|\alpha|}{4} \ge K$$

for all $\alpha \in [0, 2]$, which is impossible. Hence g_0 is not a strongly unique solution of MPR(x). Of course, we could also have derived this result from Theorem 4.1.

The next example shows that the condition $\gamma(\eta, s) > 0$ is necessary for proving the implication (b) \Rightarrow (a) of Theorem 4.1.

EXAMPLE 6.2. Let S = [0, 1], $\gamma(\eta, s) = (1 - \eta)/2$, and $V := \operatorname{span}(g)$, where g(s) = s for each $s \in S$. Define a function $x \in C(S)$ by $x(s) = s^2$ for each $s \in S$.

Then (0, 1) is a solution of MPR(x). We have

$$M_0 = \{(1, 0), (-1, 1)\}$$

and

 $\Gamma_0 = \{(1, 0)\}.$

So condition (a) of Theorem 4.1 is not satisfied.

Since each feasible point (v, z) satisfies the inequality $\alpha := v_1/v_2 \leq 0$, we have

$$z - z_0 = \|x - \alpha g\|_{\infty} - \|x\|_{\infty}$$
$$= 1 - \alpha - 1$$
$$= -\alpha = |\alpha| \|g\|,$$

i.e., (0, 1) is a strongly unique solution of MPR(x).

In the linear case we can replace the condition $\gamma(\eta, s) > 0$ in the implication (b) \Rightarrow (a) of Theorem 4.1 by another one. Define the sets

$$S^{+} := \{ s \in S \mid \gamma(1, s) = 0 \},\$$

$$S^{-} := \{ s \in S \mid \gamma(-1, s) = 0 \},\$$

 $T^+ := \{1\} \times S^+$, and $T^- := \{-1\} \times S^-$. Then we have:

THEOREM 6.3. Assume that there exists a function $\tilde{g} \in V$ such that $\tilde{g}(s) > 0$ on S^+ and $\tilde{g}(s) < 0$ on S^- . Let (g_0, z_0) be a solution of MPL(x). If there exists a constant K > 0 such that

$$\bigvee_{g,z)\in V_x} z - z_0 \ge K \, \|g - g_0\|_{\infty},$$

 $(g,z) \in V_x$ then the condition (a) of Theorem 4.1 is fulfilled.

Proof. There exists an open set W containing $T^+ \cup T^-$ such that $\eta \tilde{g}(s) > 0$ for each $(\eta, s) \in W$. Let $\beta > 0$ be such that $\gamma(\eta, s) \ge \beta > 0$ for all

 (η, s) in the compact set $T \setminus W$ and choose $\alpha > 0$ so small that $\beta > \alpha \| \tilde{g} \|_{\infty}$. Then

$$\bar{\gamma}(\eta, s) := \gamma(\eta, s) + \alpha \eta \tilde{g}(s)$$

is positive in T.

Now we consider the transformed minimization problem TMPL(x).

Minimize
$$p(g, z) := z$$

subject to
 $\bigvee_{(\eta,s) \in \Gamma} \eta(g(s) - x(s)) \leq \overline{\gamma}(\eta, s)z.$

Then (g, z) is a feasible point of MPL(x) iff $(g + \alpha z \tilde{g}, z)$ is a feasible point of TMPL(x). This implies that (g, z) is a solution of MPL(x) iff $(g + \alpha z \tilde{g}, z)$ is a solution of TMPL(x). To prove the theorem, it suffices to prove that

$$(\bar{g}_0, z_0) := (g_0 + \alpha z_0 \tilde{g}, z_0)$$

is a strongly unique solution of TMPL(x).

Let (\bar{g}, z) be a feasible point of TMPL(x), where $\bar{g} = g + \alpha z \tilde{g}$ with $(y, z) \in V_x$. Then we have

$$\begin{split} \|\bar{g} - \bar{g}_0\|_{\infty} &\leq \|g - g_0\|_{\infty} + (z - z_0) \|\alpha \tilde{g}\|_{\infty} \\ &\leq K(z - z_0) + (z - z_0) \|\alpha \tilde{g}\|_{\infty} \\ &=: K_0(z - z_0). \quad \blacksquare$$

For the linear one-sided cases, i.e., $\gamma(\eta, s) = (1 + \eta)/2$ (resp. $\gamma(\eta, s) = (1 - \eta)/2$), we have $S^- = S$ and $S^+ = \emptyset$ (resp. $S^+ = S$ and $S^- = \emptyset$). Then we have the following:

COROLLARY 6.4. Assume there exists a positive function in V. Then (g_0, z_0) is a strongly unique solution of MPL(x) iff condition (a) of Theorem 4.1 is fulfilled.

References

- 1. B. BROSOWSKI, Über Tschebyscheffsche Approximation mit verallgemeinerten rationalen Funktionen, Math. Z. 90 (1965), 140–151.
- B. BROSOWSKI, A refinement of the Kolmogorov-criterion, in "Constructive Function Theory '81," pp. 241–247, Publishing House of the Bulgarian Academy of Sciences, Sofia, 1983.

STRONG UNIQUENESS

- 3. B. BROSOWSKI AND C. GUERREIRO, On the characterization of a set of optimal points and some applications, *in* "Approximation and Optimization in Mathematical Physics," (B. Brosowski and E. Martensen, Eds.), pp. 141–174, Verlag Peter Lang, Frankfurt (M) and Bern, 1983.
- 4. E. W. CHENEY, Approximation by generalized rational functions, in "Approximation of Functions," (H. L. Garabedian, Ed.), pp. 101–110, Elsevier, Amsterdam/London/New York, 1965.
- 5. E. W. CHENEY AND H. L. LOEB, Generalized rational approximation, J. SIAM Numer. Anal. Ser. B, 1 (1964), 11-25.
- 6. E. W. CHENEY AND H. L. LOEB, On the continuity of rational approximation operators, Arch. Rational Mech. Anal. 21 (1966), 391-401.
- 7. R. HETTICH AND P. ZENCKE, "Numerische Methoden der Approximation und semiinfiniten Optimierung," Teubner, Stuttgart, 1982.
- 8. H. L. LOEB, Approximation by generalized rationals, J. SIAM Numer. Anal. 3 (1966), 34-55.
- 9. H. L. LOEB AND D. G. MOURSUND, Continuity of the best approximation operator for restricted range approximations, J. Approx. Theory 1 (1968), 391-400.
- G. D. TAYLOR, Approximation by functions having restricted ranges: Equality case, Numer. Math. 14 (1969), 71-78.