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In this paper the concept of strong uniqueness is extended to non-normal

rational minimization problems. A characterization of those problems which have

strongly unique solutions is given. To obtain this characterization a refinement of

the Kolmogorov criterion is proved.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Let S be a compact Hausdorff space, S# &, and define the compact
Hausdorff space T:={—1,1}xS. Let B C:S5—R" be continuous
functions such that the set

U:={) {veR"] (C(s),v)>0}

ses§

is non-empty. Let :T—>R be continuous non-negative and for
{v, z)e Ux R define p(v, z) :=2z.
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For each xe C(S) consider the minimization problem MPR(x).
Minimize p(v, z)
subject to

(B(s),v)
V ono=—5-<
(1.5)eT CC(s), v

A particular case is given by the following.
Let g, 2900y 815 P11, Paseesy By € C(S) be such that

—y(n, s)z < nx(s).

{ﬁeR”’

Y i Bihi(s)>0}

seS i=1

is non-empty and define N :=7+m,

B(S) = (gl(s)’ gZ(S)a"'a gl(s)= 0: 03"': 0):
C(5) 1= (0, 0,y O, By(5), (S )y B(5)).

As was shown in [3], this particular case contains certain classes of
rational Chebyshev approximation problems, fe. weighted, one-sided and
unsymmetric problems.

velU }

Define the set
A pair ({B,vy)/{C, vy, z)€ VxR is also called a solution of MPR(x),
whenever (vg, z) is a solution of MPR(x). For each rye V' we define the
linear subspace

V:={<B’v>

<C,U>EC(S)

Hy:= {ve R¥Y

v ouncmw—BuLv>=0}

ses

and for each ve R let ¢, be the angle between v and H,.
For each x e C(S) we introduce the sets

v (B(s), vy

Z . =<(v, UxR —_—
%””e R YL TCE), 0

—mevsm@%

and

_{(<B,v)
V, = {(<C’ v>,z>e VxR

(v, z)er}.
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We denote by L the set
{xe C(S) | MPR(x) has a solution}.

A solution (ry, zy) of the minimization problem MPR(x) is called
strongly unique if and only if there exists a constant K| := K;(x) >0 such
that

V z-2z,2K 0, (*)
(v,z)e Zy
In this paper we characterize those functions x in L such that MPR{x)
has a strongly unique solution (rg, z,). It turns out that the Haar-condition
in a certain finite subset of S is always sufficient for strong uniqueness and
also necessary provided y(y, s)>0 for (y,s)e 7. We remark that these
results are valid without assuming normality of the function x.
In the normal case (compare Section 5} we prove that condition (*) is
equivalent to the usual definition of strong unicity, ie.,

V z2—2,2 K |lr—rols **)
(rz)e Vy

where K, := K,(x)>0. It is known that in the non-normal case even with
Haar-condition in S the inequality (**) is not valid. Thus definition (*) of
strong uniqueness extends the usual one in a natural way.

For rational Chebyshev approximation Cheney and Loeb [5] proved a
strong uniqueness result of the type

1x =7l = llx —7oll o = K5 0 (**%)

assuming that x is normal and the Haar-condition is satisfied in $. This
result was later extended by Brosowski [1] to the non-normal case. In
view of Theorem 5.2 and Example 6.2 it is not possible to derive the strong
uniqueness result (**) from (***). A direct proof of (**) was given by
Cheney [4] assuming the Haar-condition in S. Later Loeb [8] estimated
in the non-normal case the difference

I —rlle = llx = roll

essentially by K, - ¢, also assuming the Haar-condition in S.

In the proof of the sufficiency part of the strong unigueness Theorem 4.1
we use a refinement of the Kolmogorov criterion, which in proved in Sec-
tion 3. This refinement extends a result of Brosowski [2] in the linear case,
who also used it to characterize functions with strongly unique best
approximations.

Since the Haar-condition in S implies, of course, the Haar-condition in
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any finite subset of S, the various resuits mentioned above follow from our
results. Also resuits of Loeb and Moursund [9] and of Taylor [10] for the
case of one-sided rational Chebyshev approximation are included. In
Theorems 4.2 and 5.2 we have strong uniqueness results in the parameter
space which contain results of Cheney and Loeb [6] and Hettich and
Zencke [7].

If condition (*) is satisfied for MPR(x) then we can derive in the case

T.:={(n,s)eT|y(n,5)>0}

compact a continuity result for the angle ¢,, ie., there exists a constant
K := Ks(x) >0 such that

0, <Kslly—x|

for all y in L, where v defines a solution of MPR( y). If x is a normal point,
then we can derive from (**) a continuity result for the metric projection.
We remark that in the case of usual Chebyshev approximation and in the
case of one-sided approximation the set T, is always compact.

We introduce some definitions and notations. For each r,e V' define the
linear space

L(ry) :={{roC—B,vyeC(S) | veR"}.

Choose a basis ¢4, ¢,,..., ¢, of £(r,) and define for each 1= (», s5) in T the
vectors

G(t) :=G(n, s) :==n(@1(s), @2(8)-.., P ul5))-
A subset M < T is said to be critical (with respect to ry in V) iff
Oecon({G(r)eR?| te M}).
For each (ry, zo) e VxR, z, >0, define
My = {(n, s)e T | n(ro(s)—x(s)) =7(n, 5)zo}.

A signature on S is a continuous mapping defined on a closed subset of S
into {—1, 1}. In the following we assume that x ¢ V" and that

YV v(—1,5)+7(1,5)>0.

seS§

We define a signature &, by setting ¢y(s)=n for each (y,s)eM,. A
signature ¢ is said to be critical iff

{(e(s), s)e T| se DOM(e)}
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is a critical subset of T. A critical signature is called primitive, if it does not
contain properly any other critical signature. We denote by A, the set of all
primitive critical signatures contained in &.

For each signature ¢ define the linear space

Y Crels) Clo) - Bls) vy =0,

se DOM{(e) J

Vig) := {v e RY

and for each ve R” let ¢,(¢) denote the angle between v and V{(e). Further
define

Iy:={(e(s), s)e Myl ee Ay}
and
So:={se S| (els), s) e}
Using Theorem 1.3 and Lemma 4.2 of [3] we have

Tueorem 1.1. If (ry, zy) is a solution of MPR(x), then &, is a critical
signature.

This theorem implies that the sets Ay, [,, and S, are non-empty
provided (ry, z,) is a solution of MPR(x). In this case we denote the
restriction of ¢4 to S, by &,.

2. A LEmMMa

LemMA 2.1. Let A be a non-empty bounded subset of RY such that

Y inf (v, w) <0,

ve H\{0} wed

where H :=span(A4).
Then there exists a constant K> 0 such that

V lnf <U, W> < —K HUH ltbl]’

ve RN we d

where \y, denotes the angle between v and H*.

Proof. By hypothesis, we have
Y ¥(v):= inf {v,w)> <0
we A

ve H
loff =1
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Hence there exists « > 0 such that
Pr)< —a

for each ve H with ||| = 1. If not there exists a sequence (v,) contained in
H such that |jv,|| =1, ¥{v,)— 0, and v, - v,. Since P(v,) <0 there exists
wo € A such that {vy, wy» <0. Consequently,

<UO, W0> < yJ(Un) < <vn5 W0>
for n large enough. For n — co we obtain
Vg, wop <0< <vg, wo),
which is a contradiction. By homogeneity, we have

v inf (o, w) < —a o]

veH W€

Now consider ve R” and let P(v) be its orthogonal projection onto H*.
Then v— P(v)e H. Thus

inf{v, w>=1inf{v — Pv, w)

< —ajlv— Po|
= —ao ||v|| sin ¢,
< —-K “U“ l/Iva

with a suitable real number K>0. |

COROLLARY 2.2. Let A be a non-empty bounded subset of R¥ such that
Oecon(A) and 0¢ con(A) for each A & A.
Then there exists a constant K> 0 such that

V inf <Ua W> < —K “U” l//v’

veRY WE4
where \, denotes the angle between v and H* ;= (span A)*,
Proof. The assumptions of the corollary imply that 4 is a finite set, say
A={w', w.., wk}.
Since 0 ¢ con(A) for each A4 < A, there exist py, pa,..., px >0 such that

prtprt =1
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and

piwh 4 pow?+ - 4 pwt=0.

Choose ve H\{0}. Then the last equation implies

p1<l7, W1>+P2<Ua W2>+ +pk<uﬂ wk>=0

Since ve H and p,> 0, at least one product (v, w’)> is different from zero.
Consequently

YV  iaf (v, w) <O,

ve H\{0} WEA

Now apply Lemma 2.1. |}

COROLLARY 23. Let A be a non-empty bounded subset of R" and
{A4;)1c4 be a family of subsets of A such that A=\] A, and for each de A

Occon(4,)&0¢con(d,) if 4,5 4,.

Then there exists a constant K> 0 such that
(a) Vve RN infweA<Us W> < —-K ”U” ')b'va
(b) VUERNinfweA<U’W>< —"K ”UH SuplsA ‘M,

where ! denotes the angle between v and H}- := (span 4,)™.

Proof. By Corollary 2.2, there exists for each le A4 a constant K; >0
such that

Y inf Co,wd < inf (o, w)< —K; ol .

ve RY we A weAd;

Consider ve H :=span(A4), v#0. Since v¢ H- and H* =, , H; there
exists A€ 4 such that ve Hy. Hence ¥ > 0. Consequently, we have

Y inf (v, w) <0
veH weAd
v#0

Applying Lemma 2.1, we obtain (a).
Since H' < H;y, we have y*<y, for each iled, and (b) follows
immediately. §
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3. REFINED KOLMOGOROV CRITERIA

In the following we use the abbreviation
wi=r,C—B,

where r, is a fixed element of V.

LemMMa 3.1. Let ¢ be a primitive critical signature for roe V. Then
0econ{e(s) w(s)e RY | se DOM(e)}
and
O¢con{e(s) w(s)eR" | se F}
for each F < DOM(e).

Proof. Let DOM(¢)=: {s,, 5,..., S }. Then there exist real numbers
oy, Opyeny 0 > 0 such that

k

Z a;e(s;) (Pj(si) =0,

i=1

Jj=1,2,..,d Since each coordinate of w is an element of #(r,), we have
also

k
Z a;e(s;) wis;) =0,
i=1
which implies
0econ{e(s) w(s) e RY | se DOM(e)}.

Suppose there exists a subset F<DOM(e) (we can assume F=
{51, 535s 8, }, n<k) and real numbers p;, ps,.., p, >0 such that

] pie(s:) w(s;)=0.

Since
L(ro)={{w,v)eC(S)|veR"},

we have

Y piels,) h(s;) =0
i=1
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for each he #(ry). In particular, we have

Z pie(s;) q)j(si) =0,
i=1
j=12,.,dor

p:G(e(s;), 5;) =0,

I PTs

i=1

ie., the restriction of ¢ to the set F is critical.

i
THeOREM 3.2 (Local Kolmogorov criterion). Let {ry, zy) be a solution
of MPR(x). Then there exists a constant K >0 such that
(@) 'V min g(s)<rols) C(s)— Bls), v) < —K o]l ¢,(&);
ve RN s e DOM{gg)
(b) V. min gs){rols) C(s)— Bls), v)> < —K v sup o,(e).
ve RN s & DOM(g) ce Ay
Proof. The non-empty set

A= {ey(s)w(s)eRY | se Sy}

is bounded, since it is contained in the compact set

{eo(s) w(s) e RY | se DOM(go)}.
By definition of S; we have

A=) 4,

ee Ag
where

A, = {go(s) w(s)e RY | se DOM(e)}.

By Lemma 3.1 and by Corollary 2.3 there exists a constant K> 0 such
that

(@) YV min s(s)Crols) Cls) = Bls) v
verN se DOM(g)
< anf g(s)Kwls), v) < —K o] @.(&);
s € DOM({&)
(b) ¥V  min gy(s){ro(s) Cls)—B(s), v
ve RN s DOM(gp)
< inf - ge(s)Kwls), v) < —K ol sup ¢, (e). B
s€ DOM(&)

e Ap
646/46/4-3
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THeOREM 3.3 (Global Kolmogorov criterion). Let (r,, zy) be a solution
of MPR(x). Then there exists a constant K, >0 such that

(@) V min  Eo(8)(rols) = r(s)) < =Ky 9(Eo);

eV s DOM(gg
(b) 'V min eo(s)(rols) —r(s) < — K, sup ,(e),
eV s DOM(gg) ce Ay

where ve U is such that r=<{B,v)>/{C,v).

Proof. Let §e DOM(g,) be such that

eo(5)Xw(8), v)> = min &o(s){ro(s) C(s)— B(s), v).

se€ DOM(gp)

Then, by using Theorem 3.2 we have

min = eols)rols) —r(s))

L a(8)<ro(s) C(s) — B(s), v
- {C@), 0y

_ 2()<ro(d) CE) — BE), v)

S (CG) vy

K |lv]| 9.(8) .
S = = —Ki0u(&),
ICll vl P

which proves (a).
Since V(&) = V{(¢) for each ¢ e A4,, we have ¢,(&,) = ¢,(¢), which implies

(®). 1

Remark. Instead of estimating (C(s),v> by |C| ., - |v|| we could have
used the sharper estimate (C(s),v> <||C|| - ||7], where ¢ € RY is defined
by

b i=v; if C;#0
if C,=0,

il
o

i=1,2,., N. This would imply also the sharper estimate

K|y
YV zzzg+——o,
(w.0)e Zs ol

in the sufficiency part of Theorem 4.1.
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In the case of linear problems the refined Kolmogorov criterion can be
stated in a more simplified way. Consider the particuar situation

B(s) :=(g(s), ga(s)..., 8A5),0),
C(s):=(0,0,.,0,1),

where g,, g,,.., g&; are linearly independent functions of C(S). Then for
each x € C(S) we have the linear problem MPL({x).

Minimize p(v, v) :=z

Subject to
Zéz v; 8:{5)
Vo (EE ) <ot
n,s)eT I+1

For any signature ¢ we introduce the linear subspaces

v ={per!| v 3 000}

se DOM(e) i=1

and

Ve(e) = {veﬂ%’“ Y <B(s),v>:0}.

se DOM(e)

Let I: R’ - R’*! be the injection defined by
Y I(b):= (b, 0).

beR

Then we have
Ve(e)=1(V,(e)) @ Re,, ;. *)

Let Pp:R'*! > V,(¢) and P,: R'— V,(¢) be the projections associated
with the spaces Vg(¢) and V,(¢g), respectively. Then we have

Prpol=1cP,.
To prove this relation choose an element b€ R’ Then we have

YV <(b—P.buy=0,

ue Vi(e)
which is equivalent to

V' <I(b)—1:P.(b),v)=0.

ve l(Vi(e))
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By (*) we also have
YV (b)—1=P(b),v)=0.

ve Vy(e)

Hence I- P,(b) is the projection of I(b) onto Vg(e), ie., Prel=1-P;.

THEOREM 3.4. (Refined linear Kolmogorov criterion). Let (gq, zo) be a
solution of MPL(x). Then there exists a real number K, >0 such that

(a) V min )8o(S)g(S)<—K2 181l - 04(80)

geV se€ DOM(gg

() ¥ min sofs)g(s) < K | gl 50D O,

geV s DOM(gp)

where 0,(c) denotes the angle between V (¢) and b, g=>"t_,b, 2.
Proof. We can assume g,=0. Let g=>'_, b, g, be given. By using
Theorem 3.2 with v=I(b) +¢,, ; we have for a suitable K;>0

min  gy(s) g(s)
se DOM({g)
—K; |[1(b) + e, 1| sin @,(Z,)
—K3 [lI(b) + e, — PRrI(B)+ e, )l
=K [ 1(b) — P o I(D)|l
—K;5 [1(b)—1- P (D)

—K5 |b— P, (b)] = —K; ||b]] sin 6,(8,) < —K3 [ 2]l 0,(20),

A

1

which proves (a).
Statement (b) follows from (a) by using the fact 0,(Z,) > 0,(¢) for each
ecdy |

4. A NECESSARY AND SUFFICIENT CONDITION
FOR STRONG UNIQUENESS

For each ro= (B, v4/{C, vy» in V the linear subspace

H0:={ye[RN

Y Cro(s) C(s) = Bls), =0}

ses§

has dimension N —d. In fact, define the linear mapping F: RY — C(S) by
setting
YV F(v):=<rqC—B,0v).

ve RY
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Then we have KER(F)=H, and IM(F)=%(r,), which proves

THEOREM 4.1. Let (rg, zo) be a solution of MPR(x). Consider the follow-
ing conditions:
(a) There exist points s,€ Sy, i=1, 2,..., d, such that the vectors

rols;) Cls;)— B(s;) € RY,

i=1,2,.,d, are linearly independent.
{(b) There exists a constant K := K(x) >0 such that

V ZZZO“”KQDU'

(v,z)e Zy

Then (a)=>(b). Moreover, if y(n, s) >0 for all (n, s)e T then we also have
(b)=(a).

Proof. {(a)= (b). We show that H,= V(&,). The inclusion H, < V(&) is
clear. On the other hand there exist signatures ¢;, ¢,,..., & in 4, such that

{815 S250es 84} < O DOM(e,).
i=1
The linear subspace
H? = {veRY| (ro(s;) C(s;) — B(s;),v>=0,i=1,2,.,d}

has dimension N —d and contains V(&;). Thus we have

Hyc V(g,)= H*.
Since dim H,= N — d, we have

Hy=V(&,)=H*.

Consequently we have ¢, = ¢,(&,) for each ve R”.
Let (v,z) be in Z, and let r= (B, v)/{C, v). By theorem 3.3(a) there
exist K, >0 and a pair (g(s), s) € M, such that

eo(8)(ro(s) —r(s)) < — K, 9,(8)-
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Then we have
7w (z — 20} Z (e0(s), s}z — 24)

= &o(s)(r(s) — x(s)) — eo(s)(ro — x(s))

= —&o(8)(ro(s) —r(s))

2 Kl (pv(EO)’
which implies

Z—2y = K(pv
where K 1=K/} -
(b)=>(a). Consider
S, :=span{ry(s) C(s)— B(s)e R" | se S},

let d,:=dim S; and assume by contradiction d,<d. Since dim Si =
N—d,, dim Hy =d, and d—d, >0, we have

dim(S+ nHF )= 1.
Now we claim that we can choose ve S N Hy, v#0, such that

Vo eo(s)<{B(s)—ro(s) Cls), v) <O.

(80(s),5) € Mo\ Iy

If not, there exists for each ve S N Hy, v#0, a point (gy(s), s)e M\
such that

eo(s){ y(s), v> >0,

where we have used the abbreviation

Y(8) := B(s) —ro(s) C(s).

Consequently, the convex hull of the linear functionals

xF v gg(s) (s), 07,

(go(s), 8} € M\I'y, defined on Hy nS{ has a non-empty interior. If not,
there exists x* e (Hy n S1)* orthogonal to x* for all (gy(s), 5) € M,\I . So,
for some ve Hy n Sy we would have

v 0= xf, x*) =xF(v)

(eo(s),5) € Mo\I'y

= 80(S)< J’(S), U>5
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which is impossible. Further we claim
Occon{x? e (HE N SE)* | (so(s), ) € Mo\

If not, there exists an element ve (S} N HyN\{0} such that for all
clements

aecon{x}e (St nHg)* | (eols), s)e M\I}
we have (g, v) <0, which implies

eo(s){ y(s), v> <O

for all (gq(s), s)e M\T,.
Conscquently, there exist real numbers

Ty Tayeny T >0
and points

(80(51), $1)s (£0(82), §2)0nes (80(81), 5i) € M\

such that 7, + 7,4+ --- + 7, =1 and

\ < S a(s) 7(5) u> _o.

veStaHy \i=1

By assumption, there exist d; points p;, p,...., p, in S, such that the set
of vectors

{¥(P1) Y(P2)ses (P u)}

is linearly independent. Choose a finite number signatures
E1, Eaymey £, € A
such that
{P1, P2 Pa} = | DOMUe)).
i=1
Denote the points in () DOM(g;) by py, p2,-- Pn- Then there exist real

numbers py, ps,..., Py > 0 such that

S 0:Gleo( p2), 1) =0,

i=1
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which implies

z:= go(ps) y(p:)=0.

1M
=

i=1

Choose a basis vy, v,,..., v, Of S;. Then the matrix

(eol )< ¥(p:)s v; >)]_12 ,,,,, di

i=12,..m
has rank d,, and consequently the linear system
‘m k
5 Aeup)otp0 09 = ={ T wans)rtsi. o),
i=1 i=1
j=1,2,.,d,, has a solution
(A1s Aayey A) = R™,

With the aid of this solution define the element

7= 5 diop) ip) + 3 tieals) ¥(s)

= i=1

Each element v e R can be represented as v = wq + w, + w,, where w, € H,,
w e Hi NS, and w,e Hy nS{. Using this representation, an easy
calculation shows

vV (Jv)=0.

ve RY

We can find 7€ R such that all coefficients

pii=Ait1p;

i=1,2,.., m, are positive and at least one is zero. Without loss of generality
we can assume g,>0 for i=1,2,..,m <m and §,=0 for i=m,+1,
m; + 2,..., m. Thus we have

mi

FHrz= ) pieo(p) y(p)+ Z T,80(5:) ¥(8,).

i= i=1

Of course, we also have

V (F+1z,0)=0.

ve RV
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Now assume ¢, restricted to the set
{Pz’ P2sees pm;}
is critical. Then there exist real numbers
BisD2ses Py 20

such that p, +p,+ -~~~ +p,,=1and

2= preol p) 7(p) =0,

i=1

We can find 7> 0 such that all coefficients

i=1,2,.,m,, are non-negative and at least one is zero. Without loss of
generality we can assume p,>0 for i=1,2,.,m,<m,; and p,=0 for
i=my+ 1, my+2,.,m,. Thus we have

my k
Jtruz—1Z= Z pieo(p) y(p:)+ Z 7,80(8;) y(s;)

i=1 =1
which satisfies the relation

V (J+1z—%50v>=0.

ve RV

By repeating this process, if necessary, we can assume that the restriction
of g, to the set {p;, o,y Py}, 0<m, <m is not critical,
The points p;, pa,ey Py S15 52,0 5, satisfy the relation

% pieo(p:) y(pi)+ Z T:80(5,) y(5;) =0

i=1 i=1

with §;,> 0 and 7,> 0. Then we also have

S 5,Geo(po) p)+ Y. 1,Gleo(ss), 1) =0,

i=1 i=1
i.e., the restriction of g, to the set

{Pla p2""9 pmz} (& {Sl, S ey Sk}
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is critical. Then there exists £€ A, such that
DOM(E) N {81, S2yees S} # I,

which contradicts the definition of I';.
Thus, our first claim is proved, i.e., there exists ve Hf nS{, v#0, such
that

Vo es)<B(s)—rols) C(s), v) <0.

(20(s).s) € Mo\I

Since ve S}, we also have

Y go(s){B(s) —ro(s) C(s), v <O.

(eo(s),s) € Mo

Define a sequence of positive real numbers (z,) such that 7, <1, 7,—>0
for n — oo, and

v,i=(l—1,) v+ 1,0

belongs to U. Since v,€ H, and ve Hy, we have

sin g, N2 Pl
ST
AL
o

ol
”(1 _Tn) 00+Tn0”

2 KOTns

with a suitable constant K,>0, ¢, := ¢, , and where P denotes the projec-
tion associated with H,.

For each ne N we define a real number z, and a point (4, s,) e T such
that

- rln(rn(sn) - x(Sn))
V(> S,)

L nlrs)— x(5))
‘“m{ 1, )

n

eR‘(n,s)eT},

where r, := {B, v,>/{C, v, >. {We remark that the existence of such points
(1,., 5,) € T follows from the assumption y > 0.)
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There is an infinite subset Ny« N such that either
{(ns 5.)€T | nEN]
consists of a single point, say (7, §), or, by compactness of 7,
{(n,,s,)€T | neNy}

has an accumulation point (7, §) in 7. By hypothesis, we have with a
suitable constant K, >0 and for all ne N, the inequality
0<KK 1, <Kgp,<z,— 2
< rln(rn(sn) - X(Sn)) _ nn(rO(Sn) - X(Sn))
Y(Ms $,) 710, S,
— Tnnn<B(sn) - rO(sn) C(Sn)s U>
V(s 8,)CCL8,), 0,0

which implies

’1n<B(Sn) - rO(Sn) C(Sn)s U>
Yy $)Csa), 0,

By continuity and since (7, §) € M, we have

1<{B(8) —ro(8) C(5), v)
(77, $)<C($), vo )
<0. |

0< KK, <

0<KK, <

Following the remark after Theorem 3.3 we introduce the set

zt = {(n2)eZ,||o] =1}

From Theorem 4.1 we can derive the following generalization of a result of
Cheney and Loeb [6]:

THEOREM 4.2. Let (ry, zy) be a solution of MPR(x). Then condition (b)
of Theorem 4.1 is equivalent to the condition

(c) There exists a constant K| := K;(x) >0 such that

YV zzzo+ K, -dist(v, Hy);

(nzyez?

consequently condition (a) of Theorem 4.1 implies (c), and if y(n, s) >0 for
all (n, s)e T then we also have (¢) = (a).
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Proof. (b)=>(c). Using the remark after Theorem 3.3 we have the
estimate

V zz2z+K|vl o,

(u,z)er
=zzo+ K, |lv]| sin ¢,

=z,+ K, |[v— Pv|
- ZQ '+‘ K1 diSt(U, Ho)

(c)=>(b). Choose (v, z)e Z,. Then we have

2370+ K, dist (i H0>

Gk
o~ Poj
=s+ ke
lo— Po
>zt K
ZZO+K(P1;' I

5. STRONG UNicCITY IN THE NORMAL CASE

An element r,€ V is said to be normal iff dim #(r,) = N — 1. A function
x in L is also said to be normal iff there exists a solution (rg, zy) of
MPR(x) such that r, is normal. For each re V' we can find ve U such that

"G

for some s,. We denote by Z¥ the set
{(Ua Z)EZX I <C(S0)a U> = 1}

If ro is normal, then dim Hy=1. This implies that there exists a unique
ve€ Hy such that

and {C(sg), > =1

Fo= <Bs UO>
o <C> v0>

We introduce the linear subspace

and {C(8g), gy = 1.

Ry_;:=={weR"| {C(sq), w) =0}
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and we denote by P: RY — H, the orthogonal projection associated with
HO.

LemMmA 5.1,  Let x be a normal point and let (vy, zo) € Z¥ be a solution of
MPR(x). Suppose there exists a constant K> 0 such that

VY z—zo=Ksing,.
(.2)e Zy

Then there exists a constant K, >0 such that

Y oz Kol
(v,z)sZ; “U“
Proof. Let (v,z)eZ}¥. Then v—uv,is in Ry_,. Since Hy,n Ry _ ;= {0},
the restriction of P to Ry_, has norm O < u< 1. Then we have
z—zo= Ksin @,
_K|lv— Py
o]
_ K o= 05— P(v—1y)|
vl
>K(1—u) o —voll
ol

THEOREM 5.2. Let x be a normal point and let (rq, z,) be a solution of
MPR(x). Then the following statements are equivalent:

(a) There exists a constant K, >0 such that

v Z>ZO+KH(PU'

(v,z)e Zy

(b} There exists a constant K, >0 such that

V 2220+ K, |r—roll .
(r.z)e Vy

(c) For each p >0 there exists a constant K,>0 such that

V z2z,+K, [[v—uvl.

(v,z)eZ;
ol <p
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Proof. (a)=-(c). By Lemma 5.1 there exists a constant K> 0 such that

Klv—v
V 7 > Zo T || 0” ,
(n.2)e Z} ”U”
which implies (c).
(c)= (b). Assume by contradiction:
1
V 3 Zn—ZO<;Hrn_r0”ooa

neN (vpzp)e Zy

where r,={(B,v,>/{C,v,>. We can assume that (v,,z,)eZ¥ and
U/ |0l = 0.
We claim that ||r, — ry| » i bounded. In fact, since

Vo IlwzZn(r(s)—x(s))

(n,s)eT
it follows that
22 |Ir =Xl /17l - (*)
We have
o< Fn20 1

Ir,—rolls
which implies

Z,—Zg 1

s

< <
|lx_rn“oo+||x_r0”oo n
consequently
Zy—Zp

<<,
”’Y‘Ioo(zn-'_z()) n

which implies that (z,) is bounded and, by (*), that ||r,—r.l., is also
bounded. Tt follows that z, — z,.
We claim that also the sequence (||v,]|) is bounded. If not, then we have

{C(s0), 7> =0.

Choose a 7> 0 such that vy + w5 € U and introduce the abbreviation w,, :=
v,/llv,|l. Then we have for each ne N and (5, s)e T:
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{B(s), vy + W,
<<C<s), vt W ’“”)
O [<BGhvy
=T vt [<C(s), 05 x(s)]
wed Cls) > [<B(s), W _x(s)]
CCW), vot 1,3 | CCo), W,
_<Cls) 200+ 270,
<C(S)’ UO+ ‘Cwn>

7(n, $).

For n— o0 we obtain

((B(s), Vo+TU)

(C(s), vo+ 15y X(S)> <zoy(n, 5).

Consequently (v, + 10, z,) 18 also a solution of MPR(x), which belongs to
Z¥. From (c) we conclude

Vo + 10 =1y,

which leads to 7=0, contradicting |7|) = 1. Consequently, the sequence
(lv,ll) is bounded.
By hypothesis there exists a suitable constant K > 0 such that

1
v - ”rn'—r0“00>zn—20>K“vn_‘"voﬂa
neN

which implies v, — v,. Thus, there exists an p >0 and an ny,e N such that

V V (Cs)v,>=p>0.

nzny S8

So we have

“<B—I’0C, Un_UO>”oc
p

Loy )

nrrz_FOHOO<

SIIB—roCHm
p-K-n

”rn_‘r()Hoo,
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which implies

1 |B=roCll,

1<
n oK

For n— oo we obtain 1 <0, which is impossible.
(b)=>(a). Since for all we Ry_\{0} we have
[{B—reC,w)le>0,
there exists an o >0 such that

V. IKB=rCowhllezallwl.

we Ry_1
Let (v,2)e Z, and r:= (B, v)/{C, v). Then we have

[{B—roC, =002l

Ir=rolleo > =5
% o vol
>1eT ol
__ ¢ Mo =wol + v —,ll
10T T
_ & o—ve—Plo—vo)]
S ol
a fo—Py
=TI

o .

=370, sin ¢, > Ko,

where K> 0 is a suitable constant. The last inequality and (b) imply

Z>ZO+Kb |[r"_r0”oo>ZO+Ka(pw

where K,:=K-K,. |

THEOREM 5.3. Let x be a normal point and let (rq, z,) be a solution of
MPR(x). Consider the following conditions:
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{a) There exist points s;€ Sy, i=1, 2,..., N— 1, such that the vectors
ro(s;) C(s;) — B(s,) € RY,

i=1,2,.., N—1, are linearly independent.
(b} There exists a constant K := K(x)> 0 such that

V zZz+K|r—ryl -
(r.z)e Vx

Then (a) = (b). Moreover, if y(n, s) >0 for aii (n, s)e T then we aiso have
(b)= (a).

Proof. The theorem follows from Theorems 4.1 and 5.2. §

It is clear that we have a similar result for the local strong uniqueness in
the parameter space using condition (¢) of Theorem 5.2.

In the linear case (compare Section 3) we have Z(r)=V foralireV. So
the condition (a) of Theorem 5.3 reads:

There exist points s,€ S, i=1, 2,.., [ :=dim ¥ such that the vectors

(gl(si)’ gZ(SZ)a"-a gl(si)) € R[

i=1,2,.,/{ are linearly independent.

6. SOME REMARKS

In Theorems 3.2 and 3.3 the signature &, cannot be replaced by g, as the
following example shows.

Exampre 6.1. Let S=[-1,1], y(y4,s)=1, and ¥V :=span(g), where
g(s)=s for se S. Define a function xe C(S) by

x(s):=1 if 0<s<t
=1—s2 if —1<s<0.

Then the function gq(s) =20 defines a solution of the minimization problem
MPR(x). We have

My={(—1,5s)eT|se[0,11};

Io={(—1,0)},
Hy=V(gy) = {(0,v,)eR*| v,eR};

and V(5,) = R%

640/46/4-4
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If the statement (a) of Theorem 3.3 would be true for g, instead of &,
then for r(s)=s we would have

0= min s= min —1(0—ys)
se[0,1] se[0,1]

< —K; 9,(¢) <0.
This example also shows that “p?-strong uniqueness” does not imply
strong uniqueness. With the abbreviation o :=v,/v, we have

i
ey

xe[0,2]

2
o
Ix—ogle =Xl =

=q—1 if =2

= —ga if a<O.

Since we have

) o
sin @, = ,
Po 1442
we can find a constant K >0 such that
v
X — _1‘ 4 > chﬁ ’
UZ [ee]

hence g,=0 is a “p*-strongly unique” solution of MPR(x).
But there does not exist a constant K, > 0 such that

- ”x”oo >I(VO(pv'

fee]

3]
X——g
)

Otherwise we would have

Kol

J1+a®

o? .
le—dgHoo“||x|!oo=—4->K51n(P=

for all a € [0, 27. This implies

J1+a2 o
N~ e
7 K

for all «e [0, 27, which is impossible. Hence g, is not a strongly unique
solution of MPR(x). Of course, we could also have derived this result from
Theorem 4.1. |
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The next example shows that the condition y{x, s)>0 is necessary for
proving the implication (b)=-(a) of Theorem 4.1.

ExampLE 6.2. Let S={[0,17, 7(n,s)=(1—#)/2, and V :=span{g},
where g(s)=s for each se S. Define a function xe& C(S) by x(s)=s? for
each seS.

Then (0, 1} is a solution of MPR{x). We have

My={(1,0), (—1, 1)}
and

So condition (a) of Theorem 4.1 is not satisfied.
Since each feasible point (v, z) satisfies the inequality o :=v,/v, <0, we
have
z—zo=|x—oglo—lIxle

=1l—o0—1

—o=lof | gl

ie, (0, 1) is a strongly unique solution of MPR(x).

In the linear case we can replace the condition y(n,s)>0 in the
implication (b)=>(a) of Theorem 4.1 by another one. Define the sets

St ={seS|y(1,s5)=0},
ST i={seS|y(—1,5)=0},
TT:={1}xS* and T~ := {1} xS". Then we have:
THEOREM 6.3. Assume that there exists a function §eV such that

g(s)Y>00n S* and g(s)<0 on S™. Let (g, zo) be a solution of MPL(x).
If there exists a constant K >0 such that

V Z—ZOZK“g_gO”ooa

(g.z)eVy

then the condition (a) of Theorem 4.1 is fulfilled.

Proof. There exists an open set W containing 7+ U T~ such that
ng(s) >0 for each (n,s)e W. Let >0 be such that y(, s)= >0 for all

640/46/4-4"
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(1, 5) in the compact set T\W and choose >0 so small that >« || §l| .-
Then

7(n, s) :=y(n, s) + ong(s)

is positive in T.
Now we consider the transformed minimization problem TMPL(x).

Minimize p(g, z) =z
subject to

vV n(g(s)—x(s)) <7(n, 5)z.

(ns)erl
Then (g, z) is a feasible point of MPL(x) iff (g+ azg, z) is a feasible
point of TMPL(x). This implies that (g, z) is a solution of MPL(x) iff

(g + 0zg, z) is a solution of TMPL(x). To prove the theorem, it suffices to
prove that

(80> 20) == (8o + 208, 2o)

is a strongly unique solution of TMPL(x).
Let (g, z) be a feasible point of TMPL(x), where §=g+azg with
(y,2)e V,. Then we have

18— &ollw <118~ ol + (z—20) 2&ll
< K(z—z9) + (2 —2) |08} oo
=:Ky(z—zp). |

For the linear one-sided cases, ie., y(n,s)=(1+#n)/2 (resp.y(n,s)=
(1 —71)/2), we have S =S and S* = (resp. S* =S and S~ =¢). Then
we have the following:

COROLLARY 6.4. Assume there exists a positive function in V. Then
(go, 2o) is a strongly unique solution of MPL(x) iff condition (a) of Theorem
4.1 is fulfilled. |

REFERENCES

1. B. Brosowsky, Uber Tschebyscheffsche Approximation mit verallgemeinerten rationalen
Funktionen, Math. Z. 90 (1965), 140-151.

2. B. Brosowskl, A refinement of the Kolmogorov-criterion, in “Constructive Function
Theory ’81,” pp. 241-247, Publishing House of the Bulgarian Academy of Sciences, Sofia,
1983.



10.

STRONG UNIQUENESS 373

B. Brosowski AND C. GUERREIRO, On the characterization of a set of optimal points and
some applications, in “Approximation and Optimization in Mathematical Physics,” {B.
Brosowski and E. Martensen, Eds.), pp. 141-174, Verlag Peter Lang, Frankfurt (M) and
Bern, 1983.

. E. W. CHENEY, Approximation by generalized rational functions, in “Approximation of

Functions,” (H. L. Garabedian, Ed.), pp. 101-110, Elsevier, Amsterdam/London/New
York, 1965.

. E. W. Cueney AND H. L. LoEB, Generalized rational approximation, J. SIAM Numer.

Anal. Ser. B, 1 (1964), 11-25.

. E. W. Cueney aND H. L. Loes, On the continuity of rational approximation operators,

Arch. Rational Mech. Anal. 21 (1966), 391-401.

. R. HericH AND P. ZENCKE, “Numerische Methoden der Approximation und semi-

infiniten Optimierung,” Teubner, Stuttgart, 1982.

. H. L. Lors, Approximation by generalized rationals, J. SIAM Numer. Anal. 3 {1956),

34-55.

. H. L. LoeB axp D. G. MoursunD, Continuity of the best approximation operator for

restricted range approximations, J. Approx. Theory 1 {1968), 391-400.
G. D. TayLor, Approximation by functions having restricted ranges: Equality case,
Numer. Math. 14 (1969), 71-78.



